Preface xiii 
Acknowledgments xvii 
1 Introduction 1 
1.1. Uncertainty and Its Significance / 1 
1.2. Uncertainty-Based Information / 6 
1.3. Generalized Information Theory / 7 
1.4. Relevant Terminology and Notation / 10 
1.5. An Outline of the Book / 20 
Notes / 22 
Exercises / 23 
2 Classical Possibility-Based Uncertainty Theory 26 
2.1. Possibility and Necessity Functions / 26 
2.2. Hartley Measure of Uncertainty for Finite Sets / 27 
2.2.1. Simple Derivation of the Hartley Measure / 28 
2.2.2. Uniqueness of the Hartley Measure / 29 
2.2.3. Basic Properties of the Hartley Measure / 31 
2.2.4. Examples / 35 
2.3. Hartley-Like Measure of Uncertainty for Infinite Sets / 45 
2.3.1. Definition / 45 
2.3.2. Required Properties / 46 
2.3.3. Examples / 52 
Notes / 56 
Exercises / 57 
3 Classical Probability-Based Uncertainty Theory 61 
3.1. Probability Functions / 61 
3.1.1. Functions on Finite Sets / 62 
vii 
3.1.2. Functions on Infinite Sets / 64 
3.1.3. Bayes’ Theorem / 66 
3.2. Shannon Measure of Uncertainty for Finite Sets / 67 
3.2.1. Simple Derivation of the Shannon Entropy / 69 
3.2.2. Uniqueness of the Shannon Entropy / 71 
3.2.3. Basic Properties of the Shannon Entropy / 77 
3.2.4. Examples / 83 
3.3. Shannon-Like Measure of Uncertainty for Infinite Sets / 91 
Notes / 95 
Exercises / 97 
4 Generalized Measures and Imprecise Probabilities 101 
4.1. Monotone Measures / 101 
4.2. Choquet Capacities / 106 
4.2.1. Möbius Representation / 107 
4.3. Imprecise Probabilities: General Principles / 110 
4.3.1. Lower and Upper Probabilities / 112 
4.3.2. Alternating Choquet Capacities / 115 
4.3.3. Interaction Representation / 116 
4.3.4. Möbius Representation / 119 
4.3.5. Joint and Marginal Imprecise Probabilities / 121 
4.3.6. Conditional Imprecise Probabilities / 122 
4.3.7. Noninteraction of Imprecise Probabilities / 123 
4.4. Arguments for Imprecise Probabilities / 129 
4.5. Choquet Integral / 133 
4.6. Unifying Features of Imprecise Probabilities / 135 
Notes / 137 
Exercises / 139 
5 Special Theories of Imprecise Probabilities 143 
5.1. An Overview / 143 
5.2. Graded Possibilities / 144 
5.2.1. Möbius Representation / 149 
5.2.2. Ordering of Possibility Profiles / 151 
5.2.3. Joint and Marginal Possibilities / 153 
5.2.4. Conditional Possibilities / 155 
5.2.5. Possibilities on Infinite Sets / 158 
5.2.6. Some Interpretations of Graded Possibilities / 160 
5.3. Sugeno l-Measures / 160 
5.3.1. Möbius Representation / 165 
5.4. Belief and Plausibility Measures / 166 
5.4.1. Joint and Marginal Bodies of Evidence / 169 
viii CONTENTS 
5.4.2. Rules of Combination / 170 
5.4.3. Special Classes of Bodies of Evidence / 174 
5.5. Reachable Interval-Valued Probability Distributions / 178 
5.5.1. Joint and Marginal Interval-Valued Probability 
Distributions / 183 
5.6. Other Types of Monotone Measures / 185 
Notes / 186 
Exercises / 190 
6 Measures of Uncertainty and Information 196 
6.1. General Discussion / 196 
6.2. Generalized Hartley Measure for Graded Possibilities / 198 
6.2.1. Joint and Marginal U-Uncertainties / 201 
6.2.2. Conditional U-Uncertainty / 203 
6.2.3. Axiomatic Requirements for the U-Uncertainty / 205 
6.2.4. U-Uncertainty for Infinite Sets / 206 
6.3. Generalized Hartley Measure in Dempster–Shafer 
Theory / 209 
6.3.1. Joint and Marginal Generalized Hartley Measures / 209 
6.3.2. Monotonicity of the Generalized Hartley Measure / 211 
6.3.3. Conditional Generalized Hartley Measures / 213 
6.4. Generalized Hartley Measure for Convex Sets of Probability 
Distributions / 214 
6.5. Generalized Shannon Measure in Dempster-Shafer 
Theory / 216 
6.6. Aggregate Uncertainty in Dempster–Shafer Theory / 226 
6.6.1. General Algorithm for Computing the Aggregate 
Uncertainty / 230 
6.6.2. Computing the Aggregated Uncertainty in Possibility 
Theory / 232 
6.7. Aggregate Uncertainty for Convex Sets of Probability 
Distributions / 234 
6.8. Disaggregated Total Uncertainty / 238 
6.9. Generalized Shannon Entropy / 241 
6.10. Alternative View of Disaggregated Total Uncertainty / 248 
6.11. Unifying Features of Uncertainty Measures / 253 
Notes / 253 
Exercises / 255 
7 Fuzzy Set Theory 260 
7.1. An Overview / 260 
7.2. Basic Concepts of Standard Fuzzy Sets / 262 
7.3. Operations on Standard Fuzzy Sets / 266 
CONTENTS ix 
7.3.1. Complementation Operations / 266 
7.3.2. Intersection and Union Operations / 267 
7.3.3. Combinations of Basic Operations / 268 
7.3.4. Other Operations / 269 
7.4. Fuzzy Numbers and Intervals / 270 
7.4.1. Standard Fuzzy Arithmetic / 273 
7.4.2. Constrained Fuzzy Arithmetic / 274 
7.5. Fuzzy Relations / 280 
7.5.1. Projections and Cylindric Extensions / 281 
7.5.2. Compositions, Joins, and Inverses / 284 
7.6. Fuzzy Logic / 286 
7.6.1. Fuzzy Propositions / 287 
7.6.2. Approximate Reasoning / 293 
7.7. Fuzzy Systems / 294 
7.7.1. Granulation / 295 
7.7.2. Types of Fuzzy Systems / 297 
7.7.3. Defuzzification / 298 
7.8. Nonstandard Fuzzy Sets / 299 
7.9. Constructing Fuzzy Sets and Operations / 303 
Notes / 305 
Exercises / 308 
8 Fuzzification of Uncertainty Theories 315 
8.1. Aspects of Fuzzification / 315 
8.2. Measures of Fuzziness / 321 
8.3. Fuzzy-Set Interpretation of Possibility Theory / 326 
8.4. Probabilities of Fuzzy Events / 334 
8.5. Fuzzification of Reachable Interval-Valued Probability 
Distributions / 338 
8.6. Other Fuzzification Efforts / 348 
Notes / 350 
Exercises / 351 
9 Methodological Issues 355 
9.1. An Overview / 355 
9.2. Principle of Minimum Uncertainty / 357 
9.2.1. Simplification Problems / 358 
9.2.2. Conflict-Resolution Problems / 364 
9.3. Principle of Maximum Uncertainty / 369 
9.3.1. Principle of Maximum Entropy / 369 
x CONTENTS 
9.3.2. Principle of Maximum Nonspecificity / 373 
9.3.3. Principle of Maximum Uncertainty in GIT / 375 
9.4. Principle of Requisite Generalization / 383 
9.5. Principle of Uncertainty Invariance / 387 
9.5.1. Computationally Simple Approximations / 388 
9.5.2. Probability–Possibility Transformations / 390 
9.5.3. Approximations of Belief Functions by Necessity 
Functions / 399 
9.5.4. Transformations Between l-Measures and Possibility 
Measures / 402 
9.5.5. Approximations of Graded Possibilities by Crisp 
Possibilities / 403 
Notes / 408 
Exercises / 411 
10 Conclusions 415 
10.1. Summary and Assessment of Results in Generalized 
Information Theory / 415 
10.2. Main Issues of Current Interest / 417 
10.3. Long-Term Research Areas / 418 
10.4. Significance of GIT / 419 
Notes / 421 
Appendix A Uniqueness of the U-Uncertainty 425 
Appendix B Uniqueness of Generalized Hartley Measure 
in the Dempster–Shafer Theory 430 
Appendix C Correctness of Algorithm 6.1 437 
Appendix D Proper Range of Generalized 
Shannon Entropy 442 
Appendix E Maximum of GSa in Section 6.9 447 
Appendix F Glossary of Key Concepts 449 
Appendix G Glossary of Symbols 455 
Bibliography 458 
Subject Index 487 
Name Index 494  |