人大经济论坛下载系统

经济学 计量与统计 工商管理与财会金融投资学 其他
返回首页
当前位置: 主页 > 图书 > 金融投资学 >

Mathematical Finance: Theory, Modeling, Implementation

文件格式:Pdf 可复制性:可复制 TAG标签: Finance Theory Modeling Christian Fries 点击次数: 更新时间:2009-09-30 10:40
介绍

The book arose from my lecture notes for the lectures on mathematical finance held at University of Mainz and University of Frankfurt. It tries to give a balanced representation of the theoretic foundations, state of the art models, which are actually used in practice and their implementation.
In practice, none of the three aspects "theory", "modeling" and "implementation" may be considered alone. Knowledge of the theory is worthless if it isn't applied. Theory gives the tools for a consistent modeling. A model without implementation is essentially worthless. A good implementation requires a deep understanding of the model and the underlying theory.

With this in mind, the book tries to build a bridge from academia to practice and from theory to object oriented implementation.

P435, 15.4MB.

Contents
1  Introduction  19 
1.1  How to Read this Book  20 
1.1.1  Abridged Versions  20 
1.1.1.1  Abridged version ``Monte-Carlo pricing''  20 
1.1.1.2  Abridged version ``LIBOR Market Model''  20 
1.1.1.3  Abridged version ``Markov Functional Model''  20 
1.1.2  Special Sections  21 
I  Foundations  23 
2  Foundations  25 
2.1  Probability Theory  25 
2.2  Stochastic Processes  33 
2.3  Filtration  34 
2.4  Brownian Motion  35 
2.5  Wiener Measure, Canonical Setup  37 
2.6  Ito Calculus  38 
2.6.1  Ito Integral  41 
2.6.2  Ito Process  43 
2.6.3  Ito Lemma and Product Rule  45 
2.7  Brownian Motion with Instantaneous Correlation  48 
2.8  Martingales  50 
2.8.1  Martingale Representation Theorem  50 
2.9  Change of Measure (Girsanov, Cameron, Martin)  51 
2.10  Stochastic Integration  55 
2.11  List of Symbols  57 
3  Replication  59 
3.1  Replication Strategies  59 
3.1.1  Introduction  59 
3.1.2  Replication in a discrete Model  63 
3.1.2.1  Example: two times ($T_{0},T_{1}$), two states ($\omega _{1},\omega _{2}$), two assets ($S$,$N$)  63 
3.2  Foundations: Equivalent Martingale Measure  67 
3.2.1  Challenge and Solution Outline  67 
3.2.2  Steps towards the Universal Pricing Theorem  69 
3.2.2.1  Self-financing Trading Strategy  70 
3.2.2.2  Equivalent Martingale Measure  74 
3.2.2.3  Payoff Replication  75 
3.3  Basic Assumptions  76 
3.4  Excursion: Relative Prices and Risk Neutral Measures  77 
3.4.1  Why relative Prices?  77 
3.4.2  Risk Neutral Measure  79 
II  First Applications  81 
4  Pricing of an European Stock Option under the Black-Scholes Model  83 
5  Excursion: The Density of the Underlying of an European Call Option  87 
6  Excursion: Interpolation of European Option Prices  89 
6.1  No-Arbitrage Conditions for Interpolated Prices  89 
6.2  Arbitrage Violations through Interpolation  90 
6.2.1  Example (1): Interpolation of four Prices  90 
6.2.1.1  Linear Interpolation of Prices  91 
6.2.1.2  Linear Interpolation of Implied Volatilities  92 
6.2.1.3  Spline Interpolation of Prices respective Implied Volatilities  92 
6.2.2  Example (2): Interpolation of two Prices  92 
6.2.2.1  Lineare Interpolation for decreasing Implied Volatilities  93 
 Conclusion:  93 
6.2.2.2  Lineare Interpolation for increasing Implied Volatilities  93 
 Conclusion:  94 
6.3  Arbitrage Free Interpolation of European Option Prices  95 
7  Hedging in Continuous and Discrete Time and the Greeks  97 
7.1  Introduction  97 
7.2  Deriving the Replications Strategy from Pricing Theory  98 
 Conclusion:  99 
7.2.1  Deriving the Replication Strategy under the Assumption of a Locally Riskless Product  99 
7.2.2  The Black-Scholes Differential Equation  100 
7.2.3  The Derivative $V(t)$ as a Function of its Underlyings $S_{i}(t)$  101 
7.2.3.1  Path dependent options  102 
7.2.4  Example: Replication Portfolio and PDE under a Black-Scholes Model  102 
7.2.4.1  Interpretation of $V$ as a Function in $(t,S)$  104 
7.3  Greeks  105 
7.3.1  Greeks of a european Call-Option under the Black-Scholes model  106 
7.4  Hedging in Discrete Time: Delta- and Delta-Gamma-Hedging  107 
7.4.1  Delta Hedging  108 
7.4.2  Error Propagation  108 
7.4.2.1  Example: Time discrete delta hedge under a Black-Scholes model  109 
7.4.3  Delta-Gamma Hedging  110 
7.4.3.1  Example: Time discrete delta-gamma hedge under a Black-Scholes model  112 
7.4.4  Vega Hedging  114 
7.5  Hedging in Discrete Time: Minimizing the Residual Error (Bouchaud-Sornette Method)  116 
7.5.1  Minimizing the Residual Error at Maturity $T$  117 
7.5.2  Minimizing the Residual Error in each Time Step  118 
III  Interest Rate Structures, Interest Rate Products and Analytic Pricing Formulas  121 
 Motivation and Overview  123 
8  Interest Rate Structures  125 
8.1  Introduction  125 
8.1.1  Fixing Times and Tenor Times  126 
8.2  Definitions  126 
8.3  Interest Rate Curve Bootstrapping  131 
 Induction start ($T_{0}$):  131 
 Induction step ($T_{i-1} \rightarrow T_{i}$):  132 
8.4  Interpolation of Interest Rate Curves  132 
8.5  Implementation  133 
9  Simple Interest Rate Products  135 
9.1  Interest Rate Products Part 1: Products without Optionality  135 
9.1.1  Fix, Floating and Swap  135 
9.1.2  Money-Market Account  142 
9.2  Interest Rate Products Part 2: Simple Options  143 
9.2.1  Cap, Floor, Swaption  143 
9.2.2  Foreign Caplet, Quanto  145 
10  The Black Model for a Caplet  147 
11  Pricing of a Quanto Caplet (Modeling the FFX)  149 
11.1  Choice of Num\'eraire  149 
12  Exotic Derivatives  153 
12.1  Prototypical Product Properties  153 
12.2  Interest Rate Products Part 3: Exotic Interest Rate Derivatives  155 
12.2.1  Structured Bond, Structured Swap, Zero Structure  155 
12.2.2  Bermudan Callables and Cancelable  160 
12.2.3  Compound Options  163 
12.2.4  Trigger Products  163 
12.2.4.1  Target Redemption Note  163 
12.2.5  Structured Coupons  165 
12.2.5.1  Capped, Floored, Inverse, Spread, CMS  165 
12.2.5.2  Range Accruals  166 
12.2.5.3  Path Dependent Coupons  167 
12.2.5.4  Flexi Cap  167 
12.2.6  Shout Options  169 
12.3  Product Toolbox  169 
IV  Discretization and Numerical Valuation Methods  173 
 Motivation and Overview  175 
13  Discretization of time and state space  177 
13.1  Discretization of Time: The Euler and the Milstein Scheme  177 
13.1.1  Definitions  177 
13.1.2  Time-Discretisation of a Lognormal Process  181 
13.1.2.1  Discretization via Euler scheme  181 
13.1.2.2  Discretization via Milstein scheme  181 
13.1.2.3  Discretization of the Log-Process  181 
13.1.2.4  Exact Discretization  182 
13.2  Discretization of Paths (Monte-Carlo Simulation)  182 
13.2.1  Monte-Carlo Simulation  182 
13.2.2  Weighted Monte-Carlo Simulation  183 
13.2.3  Implementation  183 
13.2.3.1  Example: Valuation of a Stock Option under the Black-Scholes Model using Monte-Carlo Simulation  184 
13.2.3.2  Separation of Product and Model  186 
13.2.4  Review  186 
13.3  Discretization of State Space  187 
13.3.1  Definitions  187 
13.3.2  Backward-Algorithm  189 
13.3.3  Review  189 
13.3.3.1  Path Dependencies  189 
13.3.3.2  Course of Dimension  190 
13.4  Path Simulation through a Lattice: Two Layers  190 
14  Pricing Options with Early Exercise by Monte Carlo Simulation  191 
14.1  Introduction  191 
14.2  Bermudan Options: Notation  192 
14.2.1  Bermudan Callable  192 
14.2.2  Relative Prices  193 
14.3  Bermudan Option as Optimal Exercise Problem  194 
14.3.1  Bermudan Option Value as single (unconditioned) Expectation: The Optimal Exercise Value  194 
14.4  Bermudan Option Pricing - The Backward Algorithm  195 
 Induction start:  195 
 Induction step  195 
14.5  Re-simulation  196 
14.6  Perfect Foresight  197 
14.7  Conditional Expectation as Functional Dependence  198 
 Example:  199 
14.8  Binning  199 
14.8.1  Binning as a Least-Square Regression  201 
14.9  Foresight Bias  203 
14.10  Regression Methods - Least Square Monte Carlo  203 
14.10.1  Least Square Approximation of the Conditional Expectation  204 
14.10.2  Example: Evaluation of a Bermudan Option on a Stock (Backward Algorithm with Conditional Expectation Estimator)  205 
 Induction start: $t > T_{n}$  205 
 Induction step: $t = T_{i}$, $i = n, n-1, n-2, \ldots 1$  206 
14.10.3  Example: Evaluation of an Bermudan Callable  206 
 Induction start: $t > T_{n}$  206 
 Induction step: $t = T_{i}$, $i = n, n-1, n-2, \ldots 1$  209 
14.10.4  Implementation  210 
14.10.5  Binning as linear Least-Square Regression  210 
14.11  Optimization Methods  212 
14.11.1  Andersen Algorithm for Bermudan Swaptions  212 
 Induction start: $t > T_{n}$  212 
 Induction step: $t = T_{i}$, $i = n, n-1, n-2, \ldots 1$  213 
14.11.2  Review of the Threshold Optimization Method  213 
14.11.2.1  Fitting the exercise strategy to the product  213 
14.11.2.2  Disturbance of the Optimizer through Discontinuities and local Minima  215 
14.11.3  Optimization of Exercise Strategy: A more general Formulation  215 
14.11.4  Comparison of Optimization Method and Regression Method  216 
14.12  Duality Method: Upper Bound for Bermudan Option Prices - The Method of Rogers  217 
14.12.1  Foundations  217 
14.12.2  American Option Evaluation as Optimal Stopping Problem  219 
14.13  Primal-Dual Method: Upper and Lower Bound  222 
15  Sensitivities (Partial Derivatives) of Monte-Carlo Prices  225 
15.1  Introduction  225 
15.2  Problem Description  225 
15.2.1  Pricing using Monte Carlo Simulation  226 
15.2.2  Sensitivities from Monte Carlo Pricing  227 
15.2.3  Example: The Linear and the Discontinuous Payout  227 
15.2.3.1  Linear Payout  227 
15.2.3.2  Discontinuous Payout  228 
15.2.4  Example: Trigger Products  228 
15.3  Generic Sensitivities: Bumping the Model  228 
15.4  Sensitivities by Finite Differences  232 
15.4.1  Example: Finite Differences applied to Smooth and Discontinuous Payout  233 
 Simplified Example:  234 
15.5  Sensitivities by Pathwise Differentiation  234 
15.5.1  Example: Delta of a European Option under a Black-Scholes Model  235 
15.5.2  Pathwise Differentiation for Discontinuous Payouts  236 
15.6  Sensitivities by Likelihood Ratio Weighting  236 
15.6.1  Example: Delta of a European Option under a Black-Scholes Model using Pathwise Derivative  237 
15.6.2  Example: Variance Increase of the Sensitivity when using Likelihood Ratio Method for Smooth Payouts  237 
15.7  Sensitivities by Malliavin Weighting  238 
15.8  Proxy Simulation Scheme  239 
16  Proxy Simulation Schemes for Monte-Carlo Sensitivities and Importance Sampling  241 
16.1  Full Proxy Simulation Scheme  241 
16.1.1  Calculation of Monte-Carlo weights  242 
16.2  Sensitivities by Finite Differences on a Proxy Simulation Scheme  244 
16.2.1  Localization  244 
16.2.2  Object Oriented Design  245 
16.3  Importance Sampling  245 
16.3.1  Example  247 
16.4  Partial Proxy Simulation Schemes  248 
V  Pricing Models for Interest Rate Derivatives  249 
17  Market Models  251 
17.1  LIBOR Market Model  252 
17.1.1  Derivation of the Drift Term  253 
17.1.1.1  Derivation of the Drift Term under the Terminal Measure  253 
17.1.1.2  Derivation of the Drift Term under the Spot LIBOR Measure  255 
17.1.1.3  Derivation of the Drift Term under the $T_{k}$-Forward Measure  257 
17.1.2  The Short Period Bond $P(T_{m(t)+1};t)$  258 
17.1.2.1  Role of the short bond in a LIBOR Market Model  258 
17.1.2.2  Link to continuous time tenors  258 
17.1.2.3  Drift of the short bond in a LIBOR Market Model  258 
17.1.3  Discretization and (Monte Carlo) Simulation  259 
17.1.3.1  Generation of the (time-discrete) Forward Rate Process  259 
17.1.3.2  Generation of the Sample Paths  260 
17.1.3.3  Generation of the Num\'eraire  260 
17.1.4  Calibration - Choice of the free Parameters  260 
17.1.4.1  Choice of the Initial Conditions  261 
 Reproduction of Bond Market Prices  261 
17.1.4.2  Choice of the Volatilities  262 
 Reproduction of \hyperref [def:caplet]{Caplet} Market Prices  262 
 Reproduction of \hyperref [def:swaption]{Swaption} Market Prices  262 
 Functional Forms  264 
17.1.4.3  Choice of the Correlations  265 
 Factors  265 
 Functional Forms  265 
 Factor Reduction  265 
 Calibration  266 
17.1.4.4  Covariance Matrix, Calibration by Parameter Optimization  266 
17.1.4.5  Analytic Evaluation of Caplets and Swaptions  266 
 Analytic Evaluation of a Caplet in the LIBOR Market Model  266 
 Analytic Evaluation of a Swaption in the LIBOR Market Model  267 
17.1.5  Interpolation of Forward Rates in the LIBOR Market Model  267 
17.1.5.1  Interpolation of the Tenor Structure $\{ T_{i} \}$  267 
 Assumption 1: No stochastic shortly before maturity.  268 
 Assumption 2: Linearity shortly before maturity.  269 
17.2  Object Oriented Design  271 
17.2.1  Reuse of Implementation  271 
17.2.2  Separation of Product and Model  272 
17.2.3  Abstraction of Model Parameters  272 
17.2.4  Abstraction of Calibration  274 
17.3  Swap Rate Market Models (Jamshidian 1997)  275 
17.3.1  The Swap Measure  276 
17.3.2  Derivation of the Drift Term  277 
17.3.3  Calibration - Choice of the free Parameters  277 
17.3.3.1  Choice of the Initial Conditions  277 
 Reproduction of Bond Market Prices or Swap Market Prices  277 
17.3.3.2  Choice of the Volatilities  277 
 Reproduction of \hyperref [def:swaption]{Swaption} Market Prices  277 
18  Excursion: Instantaneous Correlation and Terminal Correlation  281 
18.1  Definitions  281 
18.2  Terminal Correlation studied on the Example of a LIBOR Market Model  282 
18.2.1  De-correlation in a One-Factor-Model  283 
18.2.2  Impact of the Time Structure of the Instantaneous Volatility on Caplet and Swaption Prices  284 
18.2.3  The Swaption Value as a Function of Forward Rates  285 
18.3  Terminal Correlation depends on the Equivalent Martingale Measure  288 
18.3.1  Dependence of the Terminal Density on the Martingale Measure  288 
19  Heath-Jarrow-Morton Framework: Foundations  291 
19.1  Short Rate Process in the HJM Framework  292 
19.2  The HJM Drift Condition  292 
20  Short Rate Models  297 
20.1  Introduction  297 
20.2  The Market Price of Risk  298 
20.3  Overview: Some Common Models  300 
20.4  Implementations  300 
20.4.1  Monte-Carlo Implementation of Short-Rate Models  300 
20.4.2  Lattice Implementation of Short-Rate Models  301 
21  Heath-Jarrow-Morton Framework: Immersion of Short Rate Models and LIBOR Market Model  303 
21.1  Short Rate Models in the HJM Framework  303 
21.1.1  Example: The Ho-Lee Model in the HJM Framework  303 
21.1.2  Example: The Hull-White Model in the HJM Framework  304 
21.2  LIBOR Market Model in the HJM Framework  306 
21.2.1  HJM Volatility Structure of the LIBOR Market Model  306 
21.2.2  LIBOR Market Model Drift under the $\@mathbb {Q}^{B}$ Measure  308 
21.2.3  LIBOR Market Model as a Short Rate Model  309 
22  Excursion: Shape of the Interest Rate Curve under Mean Reversion and a Multi-Factor Model  311 
22.1  Model  311 
22.2  Interpretation of the Figures  312 
22.3  Mean Reversion  312 
22.4  Factors  314 
22.5  Exponential Volatility Function  315 
22.6  Instantaneouse Correlation  317 
23  Markov Functional Models  319 
23.1  Introduction  319 
23.1.1  The Markov Functional Assumption (independent of the model considered)  320 
23.1.2  Outline of this Chapter  321 
23.2  Equity Markov Functional Model  321 
23.2.1  Markov Functional Assumption  321 
23.2.2  Example: The Black-Scholes Model  322 
23.2.3  Numerical Calibration to a Full Two Dimensional European Option Smile Surface  323 
23.2.3.1  Market Price  323 
23.2.3.2  Model Price  324 
23.2.3.3  Solving for the Functional  324 
23.2.4  Interest Rates  324 
23.2.4.1  A Note on Interest Rates and the No-Arbitrage Requirement  324 
23.2.4.2  Where are the Interest Rates?  325 
23.2.5  Model Dynamics  326 
23.2.5.1  Introduction  326 
23.2.5.2  Interest Rate Dynamics  327 
23.2.5.3  Forward Volatility  329 
23.2.6  Implementation  331 
23.3  LIBOR Markov Functional Model  331 
23.3.1  LIBOR Markov Functional Model in Terminal Measure - Hunt, Kennedy, Pelsser  331 
23.3.1.1  Evaluation within the LIBOR Markov Functional Model  333 
23.3.1.2  Calibration of the LIBOR Functional  333 
 Induction start:  334 
 Induction step ($T_{i+1} \rightarrow T_{i}$):  334 
 Induction start:  335 
 Induction step ($T_{i+1} \rightarrow T_{i}$):  336 
23.4  Implementation: Lattice  336 
23.4.1  Convolution with the Normal Probability Density  336 
23.4.1.1  Piecewise constant Approximation  337 
23.4.1.2  Piecewise polynomial Approximation  337 
23.4.2  State space discretization  339 
23.4.2.1  Equidistant discretization  339 
VI  Extended Models  341 
24  Hybrid Models  343 
24.1  Cross Currency LIBOR Market Model  343 
24.1.1  Derivation of the Drift Term under Spot-Measure  344 
24.1.1.1  Dynamic of the domestic LIBOR under Spot Measure  344 
24.1.1.2  Dynamic of the foreign LIBOR under Spot Measure  345 
24.1.1.3  Dynamic of the FX Rate under Spot Measure  347 
24.1.2  Implementation  348 
24.2  Equity Hybrid LIBOR Market Model  348 
24.2.1  Derivation of the Drift Term under Spot-Measure  348 
24.2.1.1  Dynamic of the Stock Process under Spot Measure  349 
24.2.2  Implementation  350 
24.3  Equity-Hybrid Cross-Currency LIBOR Market Model  350 
24.3.0.1  Dynamic of the Foreign Stock under Spot-Measure  350 
24.3.1  Summary  352 
24.3.2  Implementation  353 
VII  Implementation  355 
25  Object-Oriented Implementation in Java™  357 
25.1  Elements of Object Oriented Programming: Class and Objects  358 
25.1.1  Example: Class of a Binomial Distributed Random Variable  359 
25.1.2  Constructor  360 
25.1.3  Methods: Getter, Setter, Static Methods  361 
25.1.3.1  Aufrufkonvention, Signatur  361 
25.1.3.2  Getter, Setter  361 
25.1.3.3  Statische Methoden  361 
25.2  Principles of Object Oriented Programming  362 
25.2.1  Data Hiding and Interfaces  362 
25.2.1.1  Kapselung  363 
 Beispiel für Kapselung: Anbieten alternativer Methoden  364 
 Beispiel für Kapselung: Geschwindigkeitssteigerung durch Erweitern des internen Datenmodells um einen Cache  364 
25.2.1.2  Interfaces  365 
25.2.1.3  Beispiel: Diskrete reellwertige Zufallsvariable  366 
25.2.2  Abstraction and Inheritance  366 
25.2.2.1  Methoden: Überschreiben und überladen  369 
25.2.3  Polymorphism  369 
25.3  Example: A Class Structure for One Dimensional Root Finders  370 
25.3.1  Root Finder for General Functions  370 
25.3.1.1  Interface  370 
25.3.1.2  Bisection Search  371 
25.3.2  Root Finder for Functions with Analytic Derivative: Newton Method  372 
25.3.2.1  Interface  372 
25.3.2.2  Newtonverfahren  372 
25.3.3  Root Finder for Functions with Derivative Estimation: Secant Method  373 
25.3.3.1  Vererbung  373 
25.3.3.2  Polymorphie  374 
25.4  Anatomy of a Java™ Class  376 
25.5  Libraries  377 
25.5.1  Java™ 2 Platform, Standard Edition (j2se)  377 
25.5.2  Java™ 2 Platform, Enterprise Edition (j2ee)  378 
25.5.3  Colt  378 
25.5.4  Commons-Math: The Jakarta Mathematics Library  378 
25.6  Some Final Remarks  378 
25.6.1  Object Oriented Design (OOD) / Unified Modeling Language (UML)  378 
VIII  Appendix  381 
A  Tools (Selection)  383 
A.1  Cholesky Decomposition  383 
A.2  Linear Regression  384 
A.3  Generation of Random Numbers  385 
A.3.1  Uniform Distributed Random Variables  385 
A.3.1.1  Mersenne Twister  385 
A.3.2  Transformation of the Random Number Distribution via the Inverse Distributionfunction  385 
A.3.3  Normal Distributed Random Variables  385 
A.3.3.1  Inverse Distribution Function  385 
A.3.3.2  Box-Muller Transformation  386 
A.3.4  Poisson Distributed Random Variables  386 
A.3.4.1  Inverse Distribution Function  386 
A.3.5  Generation of Paths of an $n$-dimensional Brownian Motion  386 
A.4  Generation of Correlated Brownian Motion  389 
A.5  Factor Reduction  390 
A.6  Optimization (one dimensional): Golden Section Search  392 
A.7  Convolution with the Normal Density  393 
B  Exercises  395 
C  List of Symbols  403 
D  Java™ Source Code (Selection)  405 
D.1  Java™ Classes for Chapter \ref {sec:IntroductionToOOWithJava}  405 
E  Technical Terms (Selection)  409 
 List of Figures  411 
 List of Tables  415 
 Bibliography  419 
 Index  427

下载地址
顶一下
(1)
50%
踩一下
(1)
50%
------分隔线----------------------------