人大经济论坛下载系统

经济学 计量与统计 工商管理与财会金融投资学 其他
返回首页
当前位置: 主页 > 论文 > 金融投资学 >

The handbook of portfolio mathematics

文件格式:Pdf 可复制性:可复制 TAG标签: portfolio mathematics 点击次数: 更新时间:2009-09-14 16:35
介绍

                        Contents

Preface    xiii

Introduction    x

PARTI    Theory    1


CHAPTER1  The Random Process and Gambling Theory      3

  • Independent versus Dependent Trials Processes    5
  • Mathematical Expectation    6
  • Exact Sequences,Possible Outcomes,and the Normal Distribution   8
  • Possible Outcomes and Standard Deviations    11
  • The House Advantage   15
  • Mathematical Expectation Less than Zero Spells Disaster   18
  • Baccarat    19
  • Numbers    20
  • Pari-MutuelBetting    21
  • Winning and Losing Streaks in the Random Process   24
  • Determining Dependency    25
  • The Runs Test,Z Scores,and Confidence Limits   27
  • The Linear Correlation Coefficient    32

CHAPTER2  ProbabilityDistributions   43

  • The Basics of Probability Distributions   43
  • Descriptive Measures of Distributions    45
  • Moments of a Distribution    47
  • The Normal Distribution    52
  • The Central Limit Theorem     52
  • Working with the Normal Distribution    54
  • Normal Probabilities    59
  • Further Derivatives of theNormal    65
  • The Lognormal Distribution    67
  • The Uniform Distribution    69
  • The Bernoulli Distribution    71
  • The Binomial Distribution    72
  • The Geometric Distribution    78
  • The Hypergeometric Distribution    80
  • The Poisson Distribution    81
  • The Exponential Distribution    85
  • The Chi-Square Distribution    87
  • The Chi-Square“Test”    88
  • The Student’sDistribution    92
  • The Multinomial Distribution    95
  • The Stable Paretian Distribution    96

CHAPTER3  Reinvestment of Returns and Geometric GrowthConcepts   99

  • To Reinvest Trading Profits or Not   99
  • Measuring a Good System for Reinvestment—The Geometric Mean   103
  • Estimating the GeometricMean    107
  • How Best to Reinvest    109

CHAPTER4  Optimal f    117

  • OptimalFixedFraction    117
  • AsymmetricalLeverage    118
  • Kelly    120
  • Finding the Optimal f by the Geometric Mean    122
  • To Summarize Thus Far    125
  • How to Figure the Geometric Mean Using Spreadsheet Logic   127
  • Geometric Average Trade    127   
  • A Simpler Method for Finding the Optimal f   128
  • The Virtues of the Optimal f    130
  • Why You Must Know Your Optimal f    132
  • Drawdown and Largest Loss with f    141
  • Consequences of Straying Too Far from the Optimal f   145
  • Equalizing Optimal f    151
  • Finding Optimal f via Parabolic Interpolation    157
  • The Next Step    161
  • Scenario Planning    162
  • Scenario Spectrums    173

CHAPTER5  Characteristics of Optimal f   175

  • Optimal f for Small Traders Just Starting Out   175
  • Threshold to Geometric   177
  • One Combined Bankroll versus Separate Bankrolls   180
  • Treat Each Play as If Infinitely Repeated   182
  • Efficiency Loss inSimultaneous Wagering or Portfolio Trading   185
  • Time Required to Reach a Specified Goal and the Trouble with Fractional f    188
  • Comparing Trading Systems    192
  • Too Much Sensitivity to the Biggest Loss   193
  • The Arc Sine Laws and Random Walks    194
  • Time Spent in a Drawdown    197
  • The Estimated Geometric Mean(or How the Dispersion of Outcomes Affects Geometric Growth)    198
  • The Fundamental Equation of Trading    202
  • Why Is f Optimal?    203

CHAPTER6  Laws of Growth,Utility,and Finite Streams    207

  • Maximizing Expected Average Compound Growth    209
  • Utility Theory    217
  • The Expected Utility Theorem   218
  • Characteristics of Utility Preference Functions    218   
  • Alternate Arguments to Classical Utility Theory   221
  • Finding Your Utility Preference Curve   222
  • Utility and the NewFramework    226

CHAPTER7  Classical Portfolio Construction   231

  • Modern Portfolio Theory    231
  • The Markowitz Model    232
  • Definition of the Problem    235
  • Solutions of Linear Systems Using Row-Equivalent Matrices  246
  • Interpreting the Results    252

CHAPTER8  The Geometry of Mean Variance Portfolios   261

  • The Capital Market Lines(CMLs)    261
  • The Geometric Efficient Frontier    266
  • Unconstrained Portfolios    273
  • How Optimal f Fits In    277
  • Completing the Loop    281

CHAPTER9  The Leverage Space Model    287

  • Why This New Framework Is Better    288
  • Multiple Simultaneous Plays    299
  • A Comparison to the Old Frameworks    302
  • Mathematical Optimization    303
  • The Objective Function   305
  • Mathematical Optimization versus Root Finding   312
  • Optimization Techniques    313
  • The Genetic Algorithm    317
  • ImportantNotes    321

CHAPTER10  The Geometry of Leverage Space Portfolios    323

  • Dilution    323
  • Reallocation    333
  • Portfolio Insurance and Optimal f   335
  • Upside Limit on Active Equity and the Margin Constraint    341   
  • f Shift and Constructing a Robust Portfolio   342
  • Tailoring a Trading Program through Reallocation   343
  • Gradient Trading and Continuous Dominance   345
  • Important Points to the Left of the Peak in then+1 Dimensional Landscape    351
  • Drawdown Management and the New Framework    359

PARTII   Practice    365

CHAPTER11  What the Professionals Have Done    367

  • Commonalities    368
  • Differences    368
  • Further Characteristics of Long-Term Trend Followers    369

CHAPTER12  The Leverage Space Portfolio Model in the RealWorld    377

  • Postscript    415
  • Index    417
下载地址
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------