Optimization Methods in Finance 
			
			
			
			
				介绍
			
			
				| Contents1 Introduction 9
 1.1 Optimization Problems . . . . . . . . . . . . . . . . . . . . . . 9
 1.1.1 Linear and Nonlinear Programming . . . . . . . . . . 10
 1.1.2 Quadratic Programming . . . . . . . . . . . . . . . . . 11
 1.1.3 Conic Optimization . . . . . . . . . . . . . . . . . . . 12
 1.1.4 Integer Programming . . . . . . . . . . . . . . . . . . 12
 1.1.5 Dynamic Programming . . . . . . . . . . . . . . . . . 13
 1.2 Optimization with Data Uncertainty . . . . . . . . . . . . . . 13
 1.2.1 Stochastic Programming . . . . . . . . . . . . . . . . . 13
 1.2.2 Robust Optimization . . . . . . . . . . . . . . . . . . . 14
 1.3 Financial Mathematics . . . . . . . . . . . . . . . . . . . . . . 16
 1.3.1 Portfolio Selection and Asset Allocation . . . . . . . . 16
 1.3.2 Pricing and Hedging of Options . . . . . . . . . . . . . 18
 1.3.3 Risk Management . . . . . . . . . . . . . . . . . . . . 19
 1.3.4 Asset/Liability Management . . . . . . . . . . . . . . 20
 2 Linear Programming: Theory and Algorithms 23
 2.1 The Linear Programming Problem . . . . . . . . . . . . . . . 23
 2.2 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
 2.3 Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . 28
 2.4 The Simplex Method . . . . . . . . . . . . . . . . . . . . . . . 31
 2.4.1 Basic Solutions . . . . . . . . . . . . . . . . . . . . . . 32
 2.4.2 Simplex Iterations . . . . . . . . . . . . . . . . . . . . 35
 2.4.3 The Tableau Form of the Simplex Method . . . . . . . 39
 2.4.4 Graphical Interpretation . . . . . . . . . . . . . . . . . 42
 2.4.5 The Dual Simplex Method . . . . . . . . . . . . . . . 43
 2.4.6 Alternatives to the Simplex Method . . . . . . . . . . 45
 3 LP Models: Asset/Liability Cash Flow Matching 47
 3.1 Short Term Financing . . . . . . . . . . . . . . . . . . . . . . 47
 3.1.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 48
 3.1.2 Solving the Model with SOLVER . . . . . . . . . . . . 50
 3.1.3 Interpreting the output of SOLVER . . . . . . . . . . 53
 3.1.4 Modeling Languages . . . . . . . . . . . . . . . . . . . 54
 3.1.5 Features of Linear Programs . . . . . . . . . . . . . . 55
 3.2 Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
 3.3 Sensitivity Analysis for Linear Programming . . . . . . . . . 58
 3
 4 CONTENTS
 3.3.1 Short Term Financing . . . . . . . . . . . . . . . . . . 58
 3.3.2 Dedication . . . . . . . . . . . . . . . . . . . . . . . . 63
 3.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
 4 LP Models: Asset Pricing and Arbitrage 69
 4.1 The Fundamental Theorem of Asset Pricing . . . . . . . . . . 69
 4.1.1 Replication . . . . . . . . . . . . . . . . . . . . . . . . 71
 4.1.2 Risk-Neutral Probabilities . . . . . . . . . . . . . . . . 72
 4.1.3 The Fundamental Theorem of Asset Pricing . . . . . . 74
 4.2 Arbitrage Detection Using Linear Programming . . . . . . . . 75
 4.3 Additional Exercises . . . . . . . . . . . . . . . . . . . . . . . 78
 4.4 Case Study: Tax Clientele Eects in Bond Portfolio Management
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
 5 Nonlinear Programming: Theory and Algorithms 85
 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
 5.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
 5.3 Univariate Optimization . . . . . . . . . . . . . . . . . . . . . 88
 5.3.1 Binary search . . . . . . . . . . . . . . . . . . . . . . . 88
 5.3.2 Newton's Method . . . . . . . . . . . . . . . . . . . . . 92
 5.3.3 Approximate Line Search . . . . . . . . . . . . . . . . 95
 5.4 Unconstrained Optimization . . . . . . . . . . . . . . . . . . . 97
 5.4.1 Steepest Descent . . . . . . . . . . . . . . . . . . . . . 97
 5.4.2 Newton's Method . . . . . . . . . . . . . . . . . . . . . 101
 5.5 Constrained Optimization . . . . . . . . . . . . . . . . . . . . 104
 5.5.1 The generalized reduced gradient method . . . . . . . 107
 5.5.2 Sequential Quadratic Programming . . . . . . . . . . . 112
 5.6 Nonsmooth Optimization: Subgradient Methods . . . . . . . 113
 6 NLP Models: Volatility Estimation 115
 6.1 Volatility Estimation with GARCH Models . . . . . . . . . . 115
 6.2 Estimating a Volatility Surface . . . . . . . . . . . . . . . . . 119
 7 Quadratic Programming: Theory and Algorithms 125
 7.1 The Quadratic Programming Problem . . . . . . . . . . . . . 125
 7.2 Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . 126
 7.3 Interior-Point Methods . . . . . . . . . . . . . . . . . . . . . . 128
 7.4 The Central Path . . . . . . . . . . . . . . . . . . . . . . . . . 131
 7.5 Interior-Point Methods . . . . . . . . . . . . . . . . . . . . . . 132
 7.5.1 Path-Following Algorithms . . . . . . . . . . . . . . . 132
 7.5.2 Centered Newton directions . . . . . . . . . . . . . . . 133
 7.5.3 Neighborhoods of the Central Path . . . . . . . . . . . 135
 7.5.4 A Long-Step Path-Following Algorithm . . . . . . . . 138
 7.5.5 Starting from an Infeasible Point . . . . . . . . . . . . 138
 7.6 QP software . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
 7.7 Additional Exercises . . . . . . . . . . . . . . . . . . . . . . . 139
 CONTENTS 5
 8 QP Models: Portfolio Optimization 141
 8.1 Mean-Variance Optimization . . . . . . . . . . . . . . . . . . 141
 8.1.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 143
 8.1.2 Large-Scale Portfolio Optimization . . . . . . . . . . . 148
 8.1.3 The Black-Litterman Model . . . . . . . . . . . . . . . 151
 8.1.4 Mean-Absolute Deviation to Estimate Risk . . . . . . 155
 8.2 Maximizing the Sharpe Ratio . . . . . . . . . . . . . . . . . . 158
 8.3 Returns-Based Style Analysis . . . . . . . . . . . . . . . . . . 160
 8.4 Recovering Risk-Neural Probabilities from Options Prices . . 162
 8.5 Additional Exercises . . . . . . . . . . . . . . . . . . . . . . . 166
 8.6 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
 9 Conic Optimization Tools 171
 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
 9.2 Second-order cone programming: . . . . . . . . . . . . . . . . 171
 9.2.1 Ellipsoidal Uncertainty for Linear Constraints . . . . . 173
 9.2.2 Conversion of quadratic constraints into second-order
 cone constraints . . . . . . . . . . . . . . . . . . . . . 175
 9.3 Semidenite programming: . . . . . . . . . . . . . . . . . . . 176
 9.3.1 Ellipsoidal Uncertainty for Quadratic Constraints . . . 178
 9.4 Algorithms and Software . . . . . . . . . . . . . . . . . . . . . 179
 10 Conic Optimization Models in Finance 181
 10.1 Tracking Error and Volatility Constraints . . . . . . . . . . . 181
 10.2 Approximating Covariance Matrices . . . . . . . . . . . . . . 184
 10.3 Recovering Risk-Neural Probabilities from Options Prices . . 187
 10.4 Arbitrage Bounds for Forward Start Options . . . . . . . . . 189
 10.4.1 A Semi-Static Hedge . . . . . . . . . . . . . . . . . . . 190
 11 Integer Programming: Theory and Algorithms 195
 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
 11.2 Modeling Logical Conditions . . . . . . . . . . . . . . . . . . 196
 11.3 Solving Mixed Integer Linear Programs . . . . . . . . . . . . 199
 11.3.1 Linear Programming Relaxation . . . . . . . . . . . . 199
 11.3.2 Branch and Bound . . . . . . . . . . . . . . . . . . . . 200
 11.3.3 Cutting Planes . . . . . . . . . . . . . . . . . . . . . . 208
 11.3.4 Branch and Cut . . . . . . . . . . . . . . . . . . . . . 212
 12 IP Models: Constructing an Index Fund 215
 12.1 Combinatorial Auctions . . . . . . . . . . . . . . . . . . . . . 215
 12.2 The Lockbox Problem . . . . . . . . . . . . . . . . . . . . . . 216
 12.3 Constructing an Index Fund . . . . . . . . . . . . . . . . . . . 219
 12.3.1 A Large-Scale Deterministic Model . . . . . . . . . . . 220
 12.3.2 A Linear Programming Model . . . . . . . . . . . . . 223
 12.4 Portfolio Optimization with Minimum Transaction Levels . . 224
 12.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
 12.6 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
 6 CONTENTS
 13 Dynamic Programming Methods 227
 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
 13.1.1 Backward Recursion . . . . . . . . . . . . . . . . . . . 230
 13.1.2 Forward Recursion . . . . . . . . . . . . . . . . . . . . 233
 13.2 Abstraction of the Dynamic Programming Approach . . . . . 234
 13.3 The Knapsack Problem. . . . . . . . . . . . . . . . . . . . . . 237
 13.3.1 Dynamic Programming Formulation . . . . . . . . . . 237
 13.3.2 An Alternative Formulation . . . . . . . . . . . . . . . 238
 13.4 Stochastic Dynamic Programming . . . . . . . . . . . . . . . 239
 14 DP Models: Option Pricing 241
 14.1 A Model for American Options . . . . . . . . . . . . . . . . . 241
 14.2 Binomial Lattice . . . . . . . . . . . . . . . . . . . . . . . . . 243
 14.2.1 Specifying the parameters . . . . . . . . . . . . . . . . 244
 14.2.2 Option Pricing . . . . . . . . . . . . . . . . . . . . . . 245
 15 DP Models: Structuring Asset Backed Securities 249
 15.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
 15.2 Enumerating possible tranches . . . . . . . . . . . . . . . . . 253
 15.3 A Dynamic Programming Approach . . . . . . . . . . . . . . 254
 15.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
 16 Stochastic Programming: Theory and Algorithms 257
 16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
 16.2 Two Stage Problems with Recourse . . . . . . . . . . . . . . . 258
 16.3 Multi Stage Problems . . . . . . . . . . . . . . . . . . . . . . 260
 16.4 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 262
 16.5 Scenario Generation . . . . . . . . . . . . . . . . . . . . . . . 265
 16.5.1 Autoregressive model . . . . . . . . . . . . . . . . . . 265
 16.5.2 Constructing scenario trees . . . . . . . . . . . . . . . 267
 17 SP Models: Value-at-Risk 273
 17.1 Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 273
 17.2 Minimizing CVaR . . . . . . . . . . . . . . . . . . . . . . . . 276
 17.3 Example: Bond Portfolio Optimization . . . . . . . . . . . . . 278
 18 SP Models: Asset/Liability Management 281
 18.1 Asset/Liability Management . . . . . . . . . . . . . . . . . . . 281
 18.1.1 Corporate Debt Management . . . . . . . . . . . . . . 284
 18.2 Synthetic Options . . . . . . . . . . . . . . . . . . . . . . . . 287
 18.3 Case Study: Option Pricing with Transaction Costs . . . . . 290
 18.3.1 The Standard Problem . . . . . . . . . . . . . . . . . . 291
 18.3.2 Transaction Costs . . . . . . . . . . . . . . . . . . . . 292
 19 Robust Optimization: Theory and Tools 295
 19.1 Introduction to Robust Optimization . . . . . . . . . . . . . . 295
 19.2 Uncertainty Sets . . . . . . . . . . . . . . . . . . . . . . . . . 296
 19.3 Dierent Flavors of Robustness . . . . . . . . . . . . . . . . . 298
 CONTENTS 7
 19.3.1 Constraint Robustness . . . . . . . . . . . . . . . . . . 298
 19.3.2 Objective Robustness . . . . . . . . . . . . . . . . . . 299
 19.3.3 Relative Robustness . . . . . . . . . . . . . . . . . . . 301
 19.3.4 Adjustable Robust Optimization . . . . . . . . . . . . 303
 19.4 Tools and Strategies for Robust Optimization . . . . . . . . . 304
 19.4.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 305
 19.4.2 Conic Optimization . . . . . . . . . . . . . . . . . . . 305
 19.4.3 Saddle-Point Characterizations . . . . . . . . . . . . . 307
 20 Robust Optimization Models in Finance 309
 20.1 Robust Multi-Period Portfolio Selection . . . . . . . . . . . . 309
 20.2 Robust Prot Opportunities in Risky Portfolios . . . . . . . . 313
 20.3 Robust Portfolio Selection . . . . . . . . . . . . . . . . . . . . 315
 20.4 Relative Robustness in Portfolio Selection . . . . . . . . . . . 317
 20.5 Moment Bounds for Option Prices . . . . . . . . . . . . . . . 319
 20.6 Additional Exercises . . . . . . . . . . . . . . . . . . . . . . . 320
 A Convexity 323
 B Cones 325
 C A Probability Primer 327
 D The Revised Simplex Method 331
 | 
			
				下载地址
			
			
			
			
			
			
			
			
			
			
				------分隔线----------------------------