PREFACE xvii
I . STATIC MARKETS . . . . . . . . . . . . . . . .
1 . The Geometry of Choices and Prices . . . . . .
2 . Preferences . . . . . . . . . . . . . . . . .
3 . Market Equilibrium . . . . . . . . . . . . . .
4 . First Probability Concepts . . . . . . . . . . .
5 . Expected Utility . . . . . . . . . . . . . . .
6 Special Choice Spaces
7 Portfolios
8 Optimization Principles
9 . Second Probability Concepts
10 . Risk Aversion
11 . Equilibrium in Static Markets Under Uncertainty
I1 . STOCHASTIC ECONOMIES 103
12 . Event Tree Economies 104
13 A Dynamic Theory of the Firm 118
14 Stochastic Processes 130
15 . Stochastic Integrals and Gains From Security Trade . . . 138
16 Stochastic Equilibria 148
17 Transformations to Martingale Gains
DISCRETE-TIME ASSET PRICING 169
18 . Markov Processes and Markov Asset Valuation 170
19 . Discrete-Time Markov Control 182
20 Discrete-Time Equilibrium Pricing
CONTINUOUS-TIME ASSET PRICING . . . . . . . . . . . 221
21 . An Overview of the Ito Calculus . . . . . . . . . . . . 222
22 . The Black-Scholes Model of Security Valuation . . . . . 232
23 . An Introduction to the Control of Ito Processes . . . . . 266
24 . Consumption and Portfolio Choice with i.i.d. Returns . . 274
25 . Continuous-Time Equilibrium Asset Pricing . . . . . . 291 |