Time series: Applications to finance
			
			
			
			
				介绍
			
			
				Contents 
Preface xi 
1 Introduction 1 
1.1 Basic Description 1 
1.2 Simple Descriptive Techniques 5 
1.2.1 Trends 5 
1.2.2 Seasonal Cycles 8 
1.3 Transformations 9 
1.4 Example 9 
1.5 Conclusions 13 
1.6 Exercises 13 
2 Probability Models 15 
2.1 Introduction 15 
2.2 Stochastic Processes 15 
2.3 Examples 17 
2.4 Sample Correlation Function 18 
2.5 Exercises 20 
3 Autoregressive Moving Average Models 23 
3.1 Introduction 23 
3.2 Moving Average Models 23 
3.3 Autoregressive Models 25 
vii 
viii CONTENTS 
5.5.1 Duality between Causality 
and Stationarity 26 
3.3.2 Asymptotic Stationarity 28 
3.3.3 Causality Theorem 28 
3.3.4 Covariance Structure of AR Models 29 
3.4 ARMA Models 32 
3.5 ARIMA Models 33 
3.6 Seasonal ARIMA 35 
3.7 Exercises 36 
4 Estimation in the Time Domain 39 
4.1 Introduction 39 
4.2 Moment Estimators 39 
4.3 Autoregressive Models 40 
4.4 Moving Average Models 42 
4.5 ARMA Models 43 
4.6 Maximum Likelihood Estimates 44 
4.7 Partial ACF 47 
4.8 Order Selections 49 
4.9 Residual Analysis 53 
4.10 Model Building 53 
4.11 Exercises 54 
5 Examples in SPLUS 59 
5.1 Introduction 59 
5.2 Example 1 59 
5.3 Example 2 62 
5.4 Exercises 68 
6 Forecasting 69 
6.1 Introduction 69 
6.2 Simple Forecasts 70 
6.3 Box and Jenkins Approach 71 
6.4 Treasury Bill Example 73 
6.5 Recursions 77 
6.6 Exercises 77 
7 Spectral Analysis 79 
7.1 Introduction 79 
7.2 Spectral Representation Theorems 79 
7.3 Periodogram 83 
7.4 Smoothing of Periodogram 85 
7.5 Conclusions 89 
7.6 Exercises 89 
CONTENTS ix 
8 Nonstationarity 93 
8.1 Introduction 93 
8.2 Nonstationarity in Variance 93 
8.3 Nonstationarity in Mean: Random Walk 
with Drift 94 
8.4 Unit Root Test 96 
8.5 Simulations 98 
8.6 Exercises 99 
9 Heteroskedasticity 101 
9.1 Introduction 101 
9.2 ARCH 102 
9.3 GARCH 105 
9.4 Estimation and Testing for ARCH 107 
9.5 Example of Foreign Exchange Rates 109 
9.6 Exercises 116 
10 Multivariate Time Series 117 
10.1 Introduction 117 
10.2 Estimation of m and G 121 
10.3 Multivariate ARM A Processes 121 
10.3.1 Causality and Invertibility 122 
10.3.2 Identifiability 123 
10.4 Vector AR Models 124 
10.5 Example of Inferences for VAR 127 
10.6 Exercises 135 
11 State Space Models 137 
11.1 Introduction 137 
11.2 State Space Representation 137 
11.3 Kalman Recursions 140 
11.4 Stochastic Volatility Models 142 
11.5 Example of Kalman Filtering of Term Structure 144 
11.6 Exercises 150 
12 Multivariate GARCH 153 
12.1 Introduction 153 
12.2 General Model 154 
12.2.1 Diagonal Form 155 
12.2.2 Alternative Matrix Form 156 
12.3 Quadratic Form 156 
12.3.1 Single-Factor GARCH(1,1) 156 
12.3.2 Constant-Correlation Model 157 
x CONTENTS 
12.4 Example of Foreign Exchange Rates 157 
12.4.1 The Data 158 
12.4.2 Multivariate GARCH in SPLUS 158 
12.4.3 Prediction 166 
12.4-4 Predicting Portfolio Conditional 
Standard Deviations 167 
12.4.5 BEKK Model 168 
12.4-6 Vector-Diagonal Models 169 
12.4.7 ARM A in Conditional Mean 170 
12.5 Conclusions 171 
12.6 Exercises 171 
13 Cointegrations and Common Trends 173 
13.1 Introduction 173 
13.2 Definitions and Examples 174 
13.3 Error Correction Form 177 
13.4 Granger's Representation Theorem 179 
13.5 Structure of Cointegrated Systems 183 
13.6 Statistical Inference for Cointegrated Systems 184 
13.6.1 Canonical Correlations 184 
13.6.2 Inference and Testing 186 
13.7 Example of Spot Index and Futures 188 
13.8 Conclusions 193 
13.9 Exercises 193 
References 195 
Index 201  | 
			
 
			
				下载地址
			
			
			
			
			
			
			
			
			
			
				------分隔线----------------------------