Contents 
Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P-1 
Part I Linear Algebra 
Basic Linear Algebra 
1 Vectors, Matrices and Systems of Linear Equations 
Jane Day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 
2 Linear Independence, Span, and Bases 
Mark Mills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 
3 Linear Transformations 
Francesco Barioli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 
4 Determinants and Eigenvalues 
Luz M. DeAlba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 
5 Inner Product Spaces, Orthogonal Projection, Least Squares 
and Singular Value Decomposition 
Lixing Han and Michael Neumann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 
Matrices with Special Properties 
6 Canonical Forms 
Leslie Hogben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 
7 Unitary Similarity, Normal Matrices and Spectral Theory 
Helene Shapiro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 
8 Hermitian and Positive Definite Matrices 
Wayne Barrett . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 
9 Nonnegative and Stochastic Matrices 
Uriel G. Rothblum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 
xvii 
10 Partitioned Matrices 
Robert Reams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1 
Advanced Linear Algebra 
11 Functions of Matrices 
Nicholas J. Higham . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1 
12 Quadratic, Bilinear and Sesquilinear Forms 
Raphael Loewy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1 
13 Multilinear Algebra 
J. A. Dias da Silva and Armando Machado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1 
14 Matrix Equalities and Inequalities 
Michael Tsatsomeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-1 
15 Matrix Perturbation Theory 
Ren-Cang Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1 
16 Pseudospectra 
Mark Embree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-1 
17 Singular Values and Singular Value Inequalities 
Roy Mathias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-1 
18 Numerical Range 
Chi-Kwong Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18-1 
19 Matrix Stability and Inertia 
Daniel Hershkowitz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19-1 
Topics in Advanced Linear Algebra 
20 Inverse Eigenvalue Problems 
Alberto Borobia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-1 
21 Totally Positive and Totally Nonnegative Matrices 
Shaun M. Fallat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-1 
22 Linear Preserver Problems 
Peter ˇSemrl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-1 
23 Matrices over Integral Domains 
Shmuel Friedland. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23-1 
24 Similarity of Families of Matrices 
Shmuel Friedland. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24-1 
25 Max-Plus Algebra 
Marianne Akian, Ravindra Bapat, St´ephane Gaubert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-1 
xviii 
26 Matrices Leaving a Cone Invariant 
Bit-Shun Tam and Hans Schneider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-1 
Part II Combinatorial Matrix Theory and Graphs 
Matrices and Graphs 
27 Combinatorial Matrix Theory 
Richard A. Brualdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-1 
28 Matrices and Graphs 
Willem H. Haemers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28-1 
29 Digraphs and Matrices 
Jeffrey L. Stuart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-1 
30 Bipartite Graphs and Matrices 
Bryan L. Shader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-1 
Topics in Combinatorial Matrix Theory 
31 Permanents 
IanM. Wanless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31-1 
32 D-Optimal Designs 
Michael G. Neubauer and William Watkins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32-1 
33 Sign Pattern Matrices 
Frank J. Hall and Zhongshan Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33-1 
34 Multiplicity Lists for the Eigenvalues of Symmetric Matrices 
with a Given Graph 
Charles R. Johnson, Ant´onio Leal Duarte, and Carlos M. Saiago . . . . . . . . . . . . . . . . . . . . . . . 34-1 
35 Matrix Completion Problems 
Leslie Hogben and Amy Wangsness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35-1 
36 Algebraic Connectivity 
Steve Kirkland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36-1 
Part III Numerical Methods 
Numerical Methods for Linear Systems 
37 Vector and Matrix Norms, Error Analysis, Efficiency and Stability 
Ralph Byers and Biswa Nath Datta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37-1 
38 Matrix Factorizations, and Direct Solution of Linear Systems 
Christopher Beattie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38-1 
xix 
39 Least Squares Solution of Linear Systems 
Per Christian Hansen and Hans Bruun Nielsen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39-1 
40 Sparse Matrix Methods 
Esmond G. Ng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40-1 
41 Iterative Solution Methods for Linear Systems 
Anne Greenbaum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41-1 
Numerical Methods for Eigenvalues 
42 Symmetric Matrix Eigenvalue Techniques 
Ivan Slapniˇcar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42-1 
43 Unsymmetric Matrix Eigenvalue Techniques 
David S. Watkins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43-1 
44 The Implicitly Restarted Arnoldi Method 
D. C. Sorensen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44-1 
45 Computation of the Singular Value Deconposition 
Alan Kaylor Cline and Inderjit S. Dhillon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45-1 
46 Computing Eigenvalues and Singular Values to High Relative Accuracy 
Zlatko Drmaˇc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46-1 
Computational Linear Algebra 
47 Fast Matrix Multiplication 
Dario A. Bini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47-1 
48 Structured Matrix Computations 
Michael Ng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48-1 
49 Large-Scale Matrix Computations 
Roland W. Freund . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49-1 
Part IV Applications 
Applications to Optimization 
50 Linear Programming 
Leonid N. Vaserstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-1 
51 Semidefinite Programming 
Henry Wolkowicz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51-1 
xx 
Applications to Probability and Statistics 
52 Random Vectors and Linear Statistical Models 
Simo Puntanen and George P. H. Styan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52-1 
53 Multivariate Statistical Analysis 
Simo Puntanen, George A. F. Seber, and George P. H. Styan. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53-1 
54 Markov Chains 
Beatrice Meini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54-1 
Applications to Analysis 
55 Differential Equations and Stability 
Volker Mehrmann and Tatjana Stykel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-1 
56 Dynamical Systems and Linear Algebra 
Fritz Colonius and Wolfgang Kliemann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56-1 
57 Control Theory 
Peter Benner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57-1 
58 Fourier Analysis 
Kenneth Howell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58-1 
Applications to Physical and Biological Sciences 
59 Linear Algebra and Mathematical Physics 
Lorenzo Sadun. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59-1 
60 Linear Algebra in Biomolecular Modeling 
Zhijun Wu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60-1 
Applications to Computer Science 
61 Coding Theory 
Joachim Rosenthal and Paul Weiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61-1 
62 Quantum Computation 
Zijian Diao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62-1 
63 Information Retrieval andWeb Search 
Amy Langville and Carl Meyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63-1 
64 Signal Processing 
Michael Stewart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64-1 
Applications to Geometry 
65 Geometry 
Mark Hunacek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65-1 
xxi 
66 Some Applications of Matrices and Graphs in Euclidean Geometry 
Miroslav Fiedler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66-1 
Applications to Algebra 
67 Matrix Groups 
Peter J. Cameron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67-1 
68 Group Representations 
Randall Holmes and T. Y. Tam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68-1 
69 Nonassociative Algebras 
Murray R. Bremner, Lucia I. Muakami and Ivan P. Shestakov . . . . . . . . . . . . . . . . . . . . . . . . . 69-1 
70 Lie Algebras 
Robert Wilson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70-1 
Part V Computational Software 
Interactive Software for Linear Algebra 
71 MATLAB 
Steven J. Leon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71-1 
72 Linear Algebra in Maple 
David J. Jeffrey and Robert M. Corless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72-1 
73 Mathematica 
Heikki Ruskeep¨a¨a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73-1 
Packages of Subroutines for Linear Algebra 
74 BLAS 
Jack Dongarra, Victor Eijkhout, and Julien Langou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74-1 
75 LAPACK 
Zhaojun Bai, James Demmel, Jack Dongarra, Julien Langou, and Jenny Wang . . . . . . . . . 75-1 
76 Use of ARPACK and EIGS 
D. C. Sorensen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76-1 
77 Summary of Software for Linear Algebra Freely Available on theWeb 
Jack Dongarra, Victor Eijkhout, and Julien Langou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77-1 
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G-1 
Notation Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .N-1 
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-1  |