Stochastic Simulation: Algorithms and Analysis (Stochastic Modelling and Applied Probability) (Hardcover)
by Søren Asmussen (Author), Peter W. Glynn (Author)
Hardcover: 482 pages
Publisher: Springer; 1 edition (July 27, 2007)
Language: English
ISBN-10: 038730679X
Book Description
Sampling-based computational methods have become a fundamental part of the numerical toolset of practitioners and researchers across an enormous number of different applied domains and academic disciplines. This book provides a broad treatment of such sampling-based methods, as well as accompanying mathematical analysis of the convergence properties of the methods discussed. The reach of the ideas is illustrated by discussing a wide range of applications and the models that have found wide usage. The first half of the book focuses on general methods, whereas the second half discusses model-specific algorithms.
Given the wide range of examples, exercises and applications students, practitioners and researchers in probability, statistics, operations research, economics, finance, engineering as well as biology and chemistry and physics will find the book of value.
Søren Asmussen is Professor of Applied Probability at Aarhus University, Denmark and Peter Glynn is Thomas Ford Professor of Engineering at Stanford University.
Contents
Preface v
Notation xii
I What This Book Is About 1
1 An Illustrative Example: The Single-Server Queue . . . 1
2 TheMonte CarloMethod . . . . . . . . . . . . . . . . 5
3 Second Example: Option Pricing . . . . . . . . . . . . . 6
4 Issues Arising in the Monte Carlo Context . . . . . . . 9
5 Further Examples . . . . . . . . . . . . . . . . . . . . . 13
6 Introductory Exercises . . . . . . . . . . . . . . . . . . 25
Part A: General Methods and Algorithms 29
II Generating Random Objects 30
1 Uniform RandomVariables . . . . . . . . . . . . . . . . 30
2 NonuniformRandomVariables . . . . . . . . . . . . . . 36
3 Multivariate Random Variables . . . . . . . . . . . . . 49
4 Simple Stochastic Processes . . . . . . . . . . . . . . . 59
5 Further Selected Random Objects . . . . . . . . . . . . 62
6 Discrete-Event Systems and GSMPs . . . . . . . . . . 65
III Output Analysis 68
1 Normal Confidence Intervals . . . . . . . . . . . . . . . 68
Contents ix
2 Two-Stage and Sequential Procedures . . . . . . . . . . 71
3 Computing Smooth Functions of Expectations . . . . . 73
4 Computing Roots of Equations Defined by Expectations 77
5 Sectioning, Jackknifing, and Bootstrapping . . . . . . . 80
6 Variance/Bias Trade-Off Issues . . . . . . . . . . . . . 86
7 Multivariate Output Analysis . . . . . . . . . . . . . . 88
8 Small-Sample Theory . . . . . . . . . . . . . . . . . . . 90
9 Simulations Driven by Empirical Distributions . . . . . 91
10 The Simulation Budget . . . . . . . . . . . . . . . . . . 93
IV Steady-State Simulation 96
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 96
2 Formulas for the Bias and Variance . . . . . . . . . . . 102
3 Variance Estimation for Stationary Processes . . . . . 104
4 The RegenerativeMethod . . . . . . . . . . . . . . . . 105
5 TheMethod of BatchMeans . . . . . . . . . . . . . . . 109
6 Further Refinements . . . . . . . . . . . . . . . . . . . 110
7 Duality Representations . . . . . . . . . . . . . . . . . 118
8 Perfect Sampling . . . . . . . . . . . . . . . . . . . . . 120
V Variance-Reduction Methods 126
1 Importance Sampling . . . . . . . . . . . . . . . . . . . 127
2 ControlVariates . . . . . . . . . . . . . . . . . . . . . . 138
3 Antithetic Sampling . . . . . . . . . . . . . . . . . . . . 144
4 ConditionalMonte Carlo . . . . . . . . . . . . . . . . . 145
5 Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6 Common RandomNumbers . . . . . . . . . . . . . . . 149
7 Stratification . . . . . . . . . . . . . . . . . . . . . . . . 150
8 Indirect Estimation . . . . . . . . . . . . . . . . . . . . 155
VI Rare-Event Simulation 158
1 Efficiency Issues . . . . . . . . . . . . . . . . . . . . . . 158
2 Examples of Efficient Algorithms: Light Tails . . . . . 163
3 Examples of Efficient Algorithms: Heavy Tails . . . . . 173
4 Tail Estimation . . . . . . . . . . . . . . . . . . . . . . 178
5 Conditioned Limit Theorems . . . . . . . . . . . . . . . 183
6 Large-Deviations or Optimal-Path Approach . . . . . . 187
7 Markov Chains and the h-Transform . . . . . . . . . . 190
8 Adaptive Importance Sampling via the Cross-Entropy
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
9 Multilevel Splitting . . . . . . . . . . . . . . . . . . . . 201
VII Derivative Estimation 206
1 Finite Differences . . . . . . . . . . . . . . . . . . . . . 209
2 Infinitesimal Perturbation Analysis . . . . . . . . . . . 214
x Contents
3 The Likelihood Ratio Method: Basic Theory . . . . . . 220
4 The Likelihood Ratio Method: Stochastic Processes . . 224
5 Examples and SpecialMethods . . . . . . . . . . . . . 231
VIII Stochastic Optimization 242
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 242
2 Stochastic Approximation Algorithms . . . . . . . . . . 243
3 ConvergenceAnalysis . . . . . . . . . . . . . . . . . . . 245
4 Polyak–RuppertAveraging . . . . . . . . . . . . . . . . 250
5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Part B: Algorithms for Special Models 259
IX Numerical Integration 260
1 Numerical Integration in One Dimension . . . . . . . . 260
2 Numerical Integration in Higher Dimensions . . . . . . 263
3 Quasi-Monte Carlo Integration . . . . . . . . . . . . . . 265
X Stochastic Differential Equations 274
1 Generalities about Stochastic Process Simulation . . . 274
2 BrownianMotion . . . . . . . . . . . . . . . . . . . . . 276
3 The Euler Scheme for SDEs . . . . . . . . . . . . . . . 280
4 The Milstein and Other Higher-Order Schemes . . . . . 287
5 ConvergenceOrders for SDEs: Proofs . . . . . . . . . . 292
6 Approximate Error Distributions for SDEs . . . . . . . 298
7 Multidimensional SDEs . . . . . . . . . . . . . . . . . . 300
8 Reflected Diffusions . . . . . . . . . . . . . . . . . . . . 301
XI Gaussian Processes 306
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 306
2 Cholesky Factorization. Prediction . . . . . . . . . . . 311
3 Circulant-Embeddings . . . . . . . . . . . . . . . . . . 314
4 Spectral Simulation. FFT . . . . . . . . . . . . . . . . 316
5 Further Algorithms . . . . . . . . . . . . . . . . . . . . 320
6 Fractional BrownianMotion . . . . . . . . . . . . . . . 321
XII Lévy Processes 325
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 325
2 First Remarks on Simulation . . . . . . . . . . . . . . . 331
3 Dealing with the Small Jumps . . . . . . . . . . . . . . 334
4 Series Representations . . . . . . . . . . . . . . . . . . 338
5 Subordination . . . . . . . . . . . . . . . . . . . . . . . 343
6 Variance Reduction . . . . . . . . . . . . . . . . . . . . 344
7 TheMultidimensional Case . . . . . . . . . . . . . . . 346
8 Lévy-Driven SDEs . . . . . . . . . . . . . . . . . . . . . 348
Contents xi
XIII Markov Chain Monte Carlo Methods 350
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 350
2 Application Areas . . . . . . . . . . . . . . . . . . . . . 352
3 The Metropolis–Hastings Algorithm . . . . . . . . . . . 361
4 Special Samplers . . . . . . . . . . . . . . . . . . . . . 367
5 The Gibbs Sampler . . . . . . . . . . . . . . . . . . . . 375
XIV Selected Topics and Extended Examples 381
1 Randomized Algorithms for Deterministic Optimization 381
2 Resampling and Particle Filtering . . . . . . . . . . . . 385
3 Counting andMeasuring . . . . . . . . . . . . . . . . . 391
4 MCMC for the Ising Model and Square Ice . . . . . . . 395
5 Exponential Change of Measure in Markov-Modulated
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
6 Further Examples of Change of Measure . . . . . . . . 407
7 Black-BoxAlgorithms . . . . . . . . . . . . . . . . . . . 416
8 Perfect Sampling of Regenerative Processes . . . . . . . 420
9 Parallel Simulation . . . . . . . . . . . . . . . . . . . . 424
10 Branching Processes . . . . . . . . . . . . . . . . . . . 426
11 Importance Sampling for Portfolio VaR . . . . . . . . . 432
12 Importance Sampling for Dependability Models . . . . 435
13 Special Algorithms for the GI/G/1 Queue . . . . . . . 437
Appendix 442
A1 Standard Distributions . . . . . . . . . . . . . . . . . . 442
A2 Some Central Limit Theory . . . . . . . . . . . . . . . 444
A3 FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
A4 The EMAlgorithm . . . . . . . . . . . . . . . . . . . . 445
A5 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 447
A6 Itô’s Formula . . . . . . . . . . . . . . . . . . . . . . . 448
A7 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 450
A8 Integral Formulas . . . . . . . . . . . . . . . . . . . . . 450
Bibliography 452
Web Links 469
Index 471
|