Abstract. The main purpose of the paper is to provide a mathematical background for the theory of bond markets similar to that available for stock markets.We suggest two constructions of stochastic integrals with respect to processes taking values in a space of continuous functions. Such integrals are used to define the evolution of the value of a portfolio of bonds corresponding to a trading strategy which is a measure-valued predictable process. The existence of an equivalent martingale measure is discussed and HJM-type conditions are derived for a jump-diffusion model. The question of market completeness is considered as a problem of the range of a certain integral operator. We introduce a concept of approximate market completeness and show that a market is approximately complete iff an equivalent martingale measure is unique. |