Advanced 
StochasticModels, 
RiskAssessment, 
andPortfolio 
Optimization 
TheIdealRisk,Uncertainty, 
andPerformanceMeasures 
SVETLOZART.RACHEV 
STOYANV.STOYANOV 
FRANKJ.FABOZZI 
JohnWiley&Sons,Inc.共有403页。 
Contents 
Preface xiii 
Acknowledgments xv 
AbouttheAuthors xvii 
CHAPTER1 
ConceptsofProbability1 
1.1Introduction 1 
1.2BasicConcepts 2 
1.3DiscreteProbabilityDistributions 2 
1.3.1BernoulliDistribution 3 
1.3.2BinomialDistribution 3 
1.3.3PoissonDistribution 4 
1.4ContinuousProbabilityDistributions 5 
1.4.1ProbabilityDistributionFunction,Probability 
DensityFunction,andCumulativeDistribution 
Function 5 
1.4.2TheNormalDistribution 8 
1.4.3ExponentialDistribution 10 
1.4.4Student!ˉ t-distribution 11 
1.4.5ExtremeValueDistribution 12 
1.4.6GeneralizedExtremeValueDistribution 12 
1.5StatisticalMomentsandQuantiles 13 
1.5.1Location 13 
1.5.2Dispersion 13 
1.5.3Asymmetry 13 
1.5.4ConcentrationinTails 14 
1.5.5StatisticalMoments 14 
1.5.6Quantiles 16 
1.5.7SampleMoments 16 
1.6JointProbabilityDistributions 17 
1.6.1ConditionalProbability 18 
1.6.2De?nitionofJointProbabilityDistributions19 
1.6.3MarginalDistributions 19 
1.6.4DependenceofRandomVariables 20 
1.6.5CovarianceandCorrelation 20 
1.6.6MultivariateNormalDistribution 21 
1.6.7EllipticalDistributions 23 
1.6.8CopulaFunctions 25 
1.7ProbabilisticInequalities 30 
1.7.1Chebyshev!ˉsInequalit 30 
! 
1.7.2Frechet-HoeffdingInequality 31 
1.8Summary 32 
CHAPTER2 
Optimization35 
2.1Introduction 35 
2.2UnconstrainedOptimization 36 
2.2.1MinimaandMaximaofaDifferentiable 
Function 37 
2.2.2ConvexFunctions 40 
2.2.3QuasiconvexFunctions 46 
2.3ConstrainedOptimization 48 
2.3.1LagrangeMultipliers 49 
2.3.2ConvexProgramming 52 
2.3.3LinearProgramming 55 
2.3.4QuadraticProgramming 57 
2.4Summary 58 
CHAPTER3 
ProbabilityMetrics61 
3.1Introduction 61 
3.2MeasuringDistances:TheDiscreteCase 62 
3.2.1SetsofCharacteristics 63 
3.2.2DistributionFunctions 64 
3.2.3JointDistribution 68 
3.3Primary,Simple,andCompoundMetrics 72 
3.3.1AxiomaticConstruction 73 
3.3.2PrimaryMetrics 74 
3.3.3SimpleMetrics 75 
3.3.4CompoundMetrics 84 
3.3.5MinimalandMaximalMetrics 86 
3.4Summary 90 
3.5TechnicalAppendix 90 
3.5.1RemarksontheAxiomaticConstructionof 
ProbabilityMetrics 
3.5.2ExamplesofProbabilityDistances 
3.5.3MinimalandMaximalDistances 
obabilityMetrics 
Introduction 
TheClassicalCentralLimitTheorem 
4.2.1TheBinomialApproximationtotheNormal 
Distribution 
4.2.2TheGeneralCase 
4.2.3EstimatingtheDistancefromtheLimit 
Distribution 
TheGeneralizedCentralLimitTheorem 
4.3.1StableDistributions 
4.3.2ModelingFinancialAssetswithStable 
Distributions 
ConstructionofIdealProbabilityMetrics 
4.4.1De?nition 
4.4.2Examples 
Summary 
TechnicalAppendix 
4.6.1TheCLTConditions 
4.6.2RemarksonIdealMetrics 
nderUncertainty 
Introduction 
ExpectedUtilityTheory 
5.2.1St.PetersburgParadox 
5.2.2ThevonNeumann¨CMorgensternExpecte 
UtilityTheory 
5.2.3TypesofUtilityFunctions 
StochasticDominance 
5.3.1First-OrderStochasticDominance 
5.3.2Second-OrderStochasticDominance 
5.3.3Rothschild-StiglitzStochasticDominance 
5.3.4Third-OrderStochasticDominance 
5.3.5Ef?cientSetsandthePortfolioChoiceProble 
5.3.6ReturnversusPayoff5.4ProbabilityMetricsandStochasticDominance 157 
5.5Summary 161 
5.6TechnicalAppendix 161 
5.6.1TheAxiomsofChoice 161 
5.6.2StochasticDominanceRelationsofOrder n 163 
5.6.3ReturnversusPayoffandStochasticDominance164 
5.6.4OtherStochasticDominanceRelations 166 
TER6 
skandUncertainty171 
6.1Introduction 171 
6.2MeasuresofDispersion 174 
6.2.1StandardDeviation 174 
6.2.2MeanAbsoluteDeviation 176 
6.2.3SemistandardDeviation 177 
6.2.4AxiomaticDescription 178 
6.2.5DeviationMeasures 179 
6.3ProbabilityMetricsandDispersionMeasures 180 
6.4MeasuresofRisk 181 
6.4.1Value-at-Risk 182 
6.4.2ComputingPortfolioVaRinPractice 186 
6.4.3BacktestingofVaR 192 
6.4.4CoherentRiskMeasures 194 
6.5RiskMeasuresandDispersionMeasures 198 
6.6RiskMeasuresandStochasticOrders 199 
6.7Summary 200 
6.8TechnicalAppendix 201 
6.8.1ConvexRiskMeasures 201 
6.8.2ProbabilityMetricsandDeviationMeasures202 
TER7 
verageValue-at-Risk207 
7.1Introduction 207 
7.2AverageValue-at-Risk 208 
7.3AVaREstimationfromaSample 214 
7.4ComputingPortfolioAVaRinPractice 216 
7.4.1TheMultivariateNormalAssumption 216 
7.4.2TheHistoricalMethod 217 
7.4.3TheHybridMethod 217 
7.4.4TheMonteCarloMethod 218 
7.5BacktestingofAVaR 2207.6SpectralRiskMeasures 
7.7RiskMeasuresandProbabilityMetrics 
7.8Summary 
7.9TechnicalAppendix 
7.9.1CharacteristicsofConditionalLoss 
Distributions 
7.9.2Higher-OrderAVaR 
7.9.3TheMinimizationFormulaforAVaR 
7.9.4AVaRforStableDistributions 
7.9.5ETLversusAVaR 
7.9.6RemarksonSpectralRiskMeasures 
TER8 
timalPortfolios 
8.1Introduction 
8.2Mean-VarianceAnalysis 
8.2.1Mean-VarianceOptimizationProblem 
8.2.2TheMean-VarianceEf?cientFrontier 
8.2.3Mean-VarianceAnalysisandSSD 
8.2.4AddingaRisk-FreeAsset 
8.3Mean-RiskAnalysis 
8.3.1Mean-RiskOptimizationProblems 
8.3.2TheMean-RiskEf?cientFrontier 
8.3.3Mean-RiskAnalysisandSSD 
8.3.4RiskversusDispersionMeasures 
8.4Summary 
8.5TechnicalAppendix 
8.5.1TypesofConstraints 
8.5.2QuadraticApproximationstoUtilityF 
8.5.3SolvingMean-VarianceProblemsinPr 
8.5.4SolvingMean-RiskProblemsinPractic 
8.5.5Reward-RiskAnalysis 
TER9 
nchmarkTrackingProblems 
9.1Introduction 
9.2TheTrackingErrorProblem 
9.3RelationtoProbabilityMetrics 
9.4Examplesofr.d.Metrics 
9.5NumericalExample 
9.6Summary9.7TechnicalAppendix 
9.7.1DeviationMeasuresandr.d.Metrics 
9.7.2RemarksontheAxioms 
9.7.3Minimalr.d.Metrics 
9.7.4LimitCasesof L 
(X,Y)and (X,Y) 
p 
p 
9.7.5Computingr.d.MetricsinPractice 
TER10 
rformanceMeasures 
0.1Introduction 
0.2Reward-to-RiskRatios 
10.2.1RRRatiosandtheEf?cientPortfolios 
10.2.2LimitationsintheApplicationof 
Reward-to-RiskRatios 
10.2.3TheSTARR 
10.2.4TheSortinoRatio 
10.2.5TheSortino-SatchellRatio 
10.2.6AOne-SidedVariabilityRatio 
10.2.7TheRachevRatio 
0.3Reward-to-VariabilityRatios 
10.3.1RVRatiosandtheEf?cientPortfolios 
10.3.2TheSharpeRatio 
10.3.3TheCapitalMarketLineandtheSharpeRatio 
0.4Summary 
0.5TechnicalAppendix 
10.5.1ExtensionsofSTARR 
10.5.2QuasiconcavePerformanceMeasures 
10.5.3TheCapitalMarketLineandQuasiconcave 
Ratios 
10.5.4NonquasiconcavePerformanceMeasures 
10.5.5ProbabilityMetricsandPerformanceMeasures 
   |