Contents 
0.1 Why a Second Edition . . . . . . . . . . . . . . . . . . . . . . . . xvii 
0.2 What This Book Is Not About . . . . . . . . . . . . . . . . . . . xix 
0.3 Structure of the Book . . . . . . . . . . . . . . . . . . . . . . . . xx 
0.4 The New Sub-Title . . . . . . . . . . . . . . . . . . . . . . . . . . xxi 
I Foundations 1 
1 Theory and Practice of Option Modelling 3 
1.1 Introduction and Plan of the Chapter . . . . . . . . . . . . . . . 3 
1.2 The Role of Models in Derivatives Pricing . . . . . . . . . . . . . 3 
1.2.1 What Are Models For? . . . . . . . . . . . . . . . . . . . . 3 
1.2.2 The Fundamental Approach . . . . . . . . . . . . . . . . . 5 
1.2.3 The Instrumental Approach . . . . . . . . . . . . . . . . . 7 
1.2.4 A Conundrum (or, ”What is Vega Hedging For?”) . . . . 9 
1.3 The E¢cient Market Hypothesis and Why It Matters for Option 
Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
1.3.1 The Three Forms of the EMH . . . . . . . . . . . . . . . . 10 
1.3.2 Pseudo-Arbitrageurs in Crisis . . . . . . . . . . . . . . . . 11 
1.3.3 Model Risk for Traders and Risk Managers . . . . . . . . 12 
1.3.4 The Parable of the Two Volatility Traders . . . . . . . . . 13 
1.4 Market Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
1.4.1 Di¤erent Users of Derivatives Models . . . . . . . . . . . . 16 
1.4.2 In-Model and Out-of-Model Hedging . . . . . . . . . . . . 16 
1.5 The Calibration Debate . . . . . . . . . . . . . . . . . . . . . . . 19 
1.5.1 Historical versus Implied Calibration . . . . . . . . . . . . 20 
1.5.2 The Logical Underpinning of the Implied Approach . . . . 21 
1.5.3 Are Derivatives Markets Informationally E¢cient? . . . . 23 
1.5.4 Back to Calibration . . . . . . . . . . . . . . . . . . . . . 29 
1.5.5 A Practical Recommendation . . . . . . . . . . . . . . . . 29 
1.6 Across-Markets Comparison of Pricing and Modelling Practices . 30 
1.7 Using Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 
2 Option Replication 35 
2.1 The Bedrock of Option Pricing . . . . . . . . . . . . . . . . . . . 35 
2.2 The Analytic (PDE) Approach . . . . . . . . . . . . . . . . . . . 36 
2.2.1 The Assumptions . . . . . . . . . . . . . . . . . . . . . . . 36 
2.2.2 The Portfolio-Replication Argument (Deterministic Volatility) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 
2.2.3 The Market Price of Risk with Deterministic Volatility . . 39 
2.2.4 Link with Expectations - the Feynman-Kac Theorem . . . 41 
2.3 Binomial replication . . . . . . . . . . . . . . . . . . . . . . . . . 42 
2.3.1 First approach - Replication Strategy . . . . . . . . . . . 43 
2.3.2 Second approach - 慛aive Expectation?. . . . . . . . . . . 45 
2.3.3 Third Approach - 慚arket Price of Risk?. . . . . . . . . . 47 
2.3.4 A Worked-Out Example . . . . . . . . . . . . . . . . . . . 49 
2.3.5 Fourth Approach - Risk-Neutral Valuation . . . . . . . . . 51 
2.3.6 Pseudo-Probabilities . . . . . . . . . . . . . . . . . . . . . 52 
2.3.7 Are the Quantities ? and ? Really Probabilities? . . . . 53 
2.3.8 Introducing Relative Prices . . . . . . . . . . . . . . . . . 55 
2.3.9 Moving to a Multi-Period Setting . . . . . . . . . . . . . . 57 
2.3.10 Fair Prices as Expectations . . . . . . . . . . . . . . . . . 60 
2.3.11 Switching Numeraires and Relating Expectations Under 
Dirent Measures . . . . . . . . . . . . . . . . . . . . . . 62 
2.3.12 Another Worked-Out Example . . . . . . . . . . . . . . . 65 
2.3.13 Relevance of the Results . . . . . . . . . . . . . . . . . . . 66 
2.4 Justifying the Two-State Branching Procedure . . . . . . . . . . 67 
2.4.1 How To Tell a Jump When You Seen One . . . . . . . . . 67 
2.5 The Nature of the Transformation between Measures: Girsanov抯 
Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 
2.5.1 An Intuitive Argument . . . . . . . . . . . . . . . . . . . . 71 
2.5.2 A Worked-Out Example . . . . . . . . . . . . . . . . . . . 73 
2.6 Switching Between the PDE, the Expectation and the Binomial- 
Replication Approaches . . . . . . . . . . . . . . . . . . . . . . . 75 
3 The Building Blocks 77 
3.1 Introduction and Plan of the Chapter . . . . . . . . . . . . . . . 77 
3.2 De卬ition of Market Terms . . . . . . . . . . . . . . . . . . . . . 77 
3.3 Hedging Forward Contracts Using Spot Quantities . . . . . . . . 80 
3.3.1 Hedging Equity Forward Contracts . . . . . . . . . . . . . 80 
3.3.2 Hedging Interest-Rate Forward Contracts . . . . . . . . . 81 
3.4 Hedging Options: Volatility of Spot and Forward Processes . . . 82 
3.5 The Link Between Root-Mean-Squared Volatilities and the Time- 
Dependence of Volatility . . . . . . . . . . . . . . . . . . . . . . . 87 
3.6 Admissibility of a Series of Root-Mean-Squared Volatilities . . . 88 
3.6.1 The Equity/FX Case . . . . . . . . . . . . . . . . . . . . . 88 
3.6.2 The Ineterest-Rate Case . . . . . . . . . . . . . . . . . . . 89 
3.7 Summary of the De卬itions So Far . . . . . . . . . . . . . . . . . 90 
3.8 Hedging an Option with a Forward-Setting Strike . . . . . . . . 92 
3.8.1 Why Is This Option Important? (And Why Is it Di¢cult 
to Hedge?) . . . . . . . . . . . . . . . . . . . . . . . . . . 93 
3.8.2 Valuing a Forward-Setting Option . . . . . . . . . . . . . 94 
3.9 Quadratic Variation: First Approach . . . . . . . . . . . . . . . . 97 
3.9.1 De…nition . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 
3.9.2 Properties of Variations . . . . . . . . . . . . . . . . . . . 99 
3.9.3 First and Second Variation of a Brownian Process . . . . 99 
3.9.4 Links between Quadratic Variation and RT 
t ¾(u)2du . . . 100 
3.9.5 Why Quadratic Variation Is So Important (Take 1) . . . . 100 
4 Variance and Mean Reversion in the Real and the Risk-Adjusted 
Worlds 103 
4.1 Introduction and Plan of the Chapter . . . . . . . . . . . . . . . 103 
4.2 Hedging a Plain-Vanilla Option: General Framework . . . . . . . 104 
4.2.1 Trading Restrictions and Model Uncertainty: Theoretical 
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 
4.2.2 The Setting . . . . . . . . . . . . . . . . . . . . . . . . . . 106 
4.2.3 The Methodology . . . . . . . . . . . . . . . . . . . . . . . 107 
4.2.4 Criterion for success . . . . . . . . . . . . . . . . . . . . . 108 
4.3 Hedging Plain-Vanilla Options: Constant-Volatility . . . . . . . . 109 
4.3.1 Trading the Gamma: One Step and Constant Volatility . 110 
4.3.2 Trading the Gamma: Several Steps and Constant Volatility115 
4.4 Hedging Plain-Vanilla Options: Time-Dependent Volatility . . . 116 
4.4.1 Views on Gamma Trading When the Volatility is Time- 
Dependent . . . . . . . . . . . . . . . . . . . . . . . . . . 117 
4.4.2 Which View Is the Correct One? (and the Feynman-Kac 
Theorem Again) . . . . . . . . . . . . . . . . . . . . . . . 120 
4.5 Hedging Behaviour In Practice . . . . . . . . . . . . . . . . . . . 122 
4.5.1 Analyzing the Replicating Portfolio . . . . . . . . . . . . . 122 
4.5.2 Hedging Results: the Time-Dependent Volatility Case . . 123 
4.5.3 Hedging with the Wrong Volatility . . . . . . . . . . . . . 125 
4.6 Robustness of the Black-and-Scholes Model . . . . . . . . . . . . 126 
4.7 Is the Total Variance All That Matters? . . . . . . . . . . . . . . 128 
4.8 Hedging Plain-Vanilla Options: Mean-Reverting Real-World Drift 129 
4.9 Hedging Plain-Vanilla Options: Finite Re-Hedging Intervals Again131 
4.9.1 The Crouhy-Galai Set-Up . . . . . . . . . . . . . . . . . . 132 
5 Instantaneous and Terminal Correlation 137 
5.1 Correlation, Co-Integration and Multi-Factor Models . . . . . . . 137 
5.1.1 The Multi-Factor Debate . . . . . . . . . . . . . . . . . . 140 
5.2 The Stochastic Evolution of Imperfectly Correlated Variables . . 142 
5.3 The Role of Terminal Correlation in the Joint Evolution of Stochastic 
Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 
5.3.1 De…ning Stochastic Integrals . . . . . . . . . . . . . . . . 146 
5.3.2 First case: European Option, One Underlying Asset . . . 148 
5.3.3 Case 2: Path-Dependent Option, One Asset . . . . . . . . 150 
   |