人大经济论坛下载系统

Excel SPSS Eviews StataSAS S-Plus&R Matlab Lisrel&AMOS Gauss 其他
返回首页
当前位置: 主页 > 经济类软件及教程 > SAS >

Univariate and Multivariate General Linear Models: Theory and Applications Using SAS softw

文件格式:Pdf 可复制性:可复制 TAG标签: sas 点击次数: 更新时间:2009-09-24 08:54
介绍

Contents

Preface xi

1 Overview of the General Linear Model 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The General Linear Model . . . . . . . . . . . . . . . . . . . . . . 1

1.3 The Restricted General Linear Model . . . . . . . . . . . . . . . . 3

1.4 The Multivariate Normal Distribution . . . . . . . . . . . . . . . . 4

1.5 Elementary Properties of Normal Random Variables . . . . . . . . . 8

1.6 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Generating Multivariate Normal Data . . . . . . . . . . . . . . . . 10

1.8 Assessing Univariate Normality . . . . . . . . . . . . . . . . . . . 11

1.8.1 Normally and Nonnormally Distributed Data . . . . . . . . 12

1.8.2 Real Data Example . . . . . . . . . . . . . . . . . . . . . . 15

1.9 Assessing Multivariate Normality with Chi-square Plots . . . . . . . 15

1.9.1 Multivariate Normal Data . . . . . . . . . . . . . . . . . . 18

1.9.2 Real Data Example . . . . . . . . . . . . . . . . . . . . . . 19

1.10 Using SAS INSIGHT . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.10.1 Ramus Bone Data . . . . . . . . . . . . . . . . . . . . . . 19

1.10.2 Risk-taking Behavior Data . . . . . . . . . . . . . . . . . . 21

1.11 Three-Dimensional Plots . . . . . . . . . . . . . . . . . . . . . . . 23

2 Unrestricted General Linear Models 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Linear Models without Restrictions . . . . . . . . . . . . . . . . . . 25

2.3 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Simultaneous Inference . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Multiple Linear Regression . . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Classical and Normal Regression Models . . . . . . . . . . 31

2.5.2 Random Classical and Jointly Normal Regression Models . 42

2.6 Linear Mixed Models . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7 One-Way Analysis of Variance . . . . . . . . . . . . . . . . . . . . 53

2.7.1 Unrestricted Full Rank One-way Design . . . . . . . . . . . 54

2.7.2 Simultaneous Inference for the One-Way Design . . . . . . 56

2.7.3 Multiple Testing . . . . . . . . . . . . . . . . . . . . . . . 58

2.8 Multiple Linear Regression:Calibration . . . . . . . . . . . . . . . 58

2.8.1 Multiple Linear Regression: Prediction . . . . . . . . . . . 68

2.9 Two-way Nested Designs . . . . . . . . . . . . . . . . . . . . . . . 70

2.10 Intraclass Covariance Models . . . . . . . . . . . . . . . . . . . . . 72

3 Restricted General Linear Models 77

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2 Estimation and Hypothesis Testing . . . . . . . . . . . . . . . . . . 77

3.3 Two-Way Factorial Design without Interaction . . . . . . . . . . . . 79

3.4 Latin Square Designs . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.5 Repeated Measures Designs . . . . . . . . . . . . . . . . . . . . . 89

3.5.1 Univariate Mixed ANOVA Model, Full Rank Representation

for a Split Plot Design . . . . . . . . . . . . . . . . . . . . 90

3.5.2 Univariate Mixed Linear Model, Less than Full Rank Representation

. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.5.3 Test for Equal Covariance Matrices and for Circularity . . . 97

3.6 Analysis of Covariance . . . . . . . . . . . . . . . . . . . . . . . . 100

3.6.1 ANCOVA with One Covariate . . . . . . . . . . . . . . . . 102

3.6.2 ANCOVA with Two Covariates . . . . . . . . . . . . . . . 104

3.6.3 ANCOVA Nested Designs . . . . . . . . . . . . . . . . . . 106

4 Weighted General Linear Models 109

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2 Estimation and Hypothesis Testing . . . . . . . . . . . . . . . . . . 110

4.3 OLSE versus FGLS . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4 General Linear Mixed Model Continued . . . . . . . . . . . . . . . 114

4.4.1 Example: Repeated Measures Design . . . . . . . . . . . . 117

4.4.2 Estimating the df for the F statistic in GLMMs . . . . . . . 118

4.5 Maximum Likelihood Estimation and Fisher’s Information Matrix . 119

4.6 WLSE for data Heteroscedasticity . . . . . . . . . . . . . . . . . . 121

4.7 WLSE for Correlated Errors . . . . . . . . . . . . . . . . . . . . . 124

4.8 FGLS for Categorical Data . . . . . . . . . . . . . . . . . . . . . . 127

4.8.1 Overview of the Categorical Data Model . . . . . . . . . . 127

4.8.2 Marginal Homogeneity . . . . . . . . . . . . . . . . . . . . 130

4.8.3 Homogeneity of Proportions . . . . . . . . . . . . . . . . . 132

4.8.4 Independence . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.8.5 Univariate Mixed Linear Model, Less than Full Rank Representation

. . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5 Multivariate General Linear Models 143

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2 Developing the Model . . . . . . . . . . . . . . . . . . . . . . . . 143

5.3 Estimation Theory and Hypothesis Testing . . . . . . . . . . . . . . 145

5.4 Multivariate Regression . . . . . . . . . . . . . . . . . . . . . . . . 152

5.5 Classical and Normal Multivariate Linear Regression Models . . . . 153

5.6 Jointly Multivariate Normal Regression Model . . . . . . . . . . . 163

5.7 Multivariate Mixed Models and the Analysis of Repeated Measurements

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.8 Extended Linear Hypotheses . . . . . . . . . . . . . . . . . . . . . 176

5.9 Multivariate Regression: Calibration and Prediction . . . . . . . . . 182

5.9.1 Fixed X . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.9.2 Random X . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.9.3 Random X, Prediction . . . . . . . . . . . . . . . . . . . . 186

5.9.4 Overview - Candidate Model . . . . . . . . . . . . . . . . . 186

5.9.5 Prediction and Shrinkage . . . . . . . . . . . . . . . . . . . 187

5.10 Multivariate Regression: Influential Observations . . . . . . . . . . 189

5.10.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 191

5.11 Nonorthogonal MANOVA designs . . . . . . . . . . . . . . . . . . 192

5.11.1 Unweighted Analysis . . . . . . . . . . . . . . . . . . . . . 197

5.11.2 Weighted Analysis . . . . . . . . . . . . . . . . . . . . . . 198

5.12 MANCOVA Designs . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.12.1 Overall tests . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.12.2 Tests of Additional Information . . . . . . . . . . . . . . . 203

5.12.3 Results and Interpretation . . . . . . . . . . . . . . . . . . 204

5.13 Stepdown Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.14 Repeated Measures Analysis . . . . . . . . . . . . . . . . . . . . . 208

5.14.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 209

5.15 Extended Linear Hypotheses . . . . . . . . . . . . . . . . . . . . . 216

5.15.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 219

 


X . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
5.9.2 Random X . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.9.3 Random X, Prediction . . . . . . . . . . . . . . . . . . . . 186

5.9.4 Overview - Candidate Model . . . . . . . . . . . . . . . . . 186

5.9.5 Prediction and Shrinkage . . . . . . . . . . . . . . . . . . . 187

5.10 Multivariate Regression: Influential Observations . . . . . . . . . . 189

5.10.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 191

5.11 Nonorthogonal MANOVA designs . . . . . . . . . . . . . . . . . . 192

5.11.1 Unweighted Analysis . . . . . . . . . . . . . . . . . . . . . 197

5.11.2 Weighted Analysis . . . . . . . . . . . . . . . . . . . . . . 198

5.12 MANCOVA Designs . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.12.1 Overall tests . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.12.2 Tests of Additional Information . . . . . . . . . . . . . . . 203

5.12.3 Results and Interpretation . . . . . . . . . . . . . . . . . . 204

5.13 Stepdown Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.14 Repeated Measures Analysis . . . . . . . . . . . . . . . . . . . . . 208

5.14.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 209

5.15 Extended Linear Hypotheses . . . . . . . . . . . . . . . . . . . . . 216

5.15.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 219

 

X . . . . . . . . . . . . . . . . . . . . . . . . . . 185
5.9.3 Random X, Prediction . . . . . . . . . . . . . . . . . . . . 186

5.9.4 Overview - Candidate Model . . . . . . . . . . . . . . . . . 186

5.9.5 Prediction and Shrinkage . . . . . . . . . . . . . . . . . . . 187

5.10 Multivariate Regression: Influential Observations . . . . . . . . . . 189

5.10.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 191

5.11 Nonorthogonal MANOVA designs . . . . . . . . . . . . . . . . . . 192

5.11.1 Unweighted Analysis . . . . . . . . . . . . . . . . . . . . . 197

5.11.2 Weighted Analysis . . . . . . . . . . . . . . . . . . . . . . 198

5.12 MANCOVA Designs . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.12.1 Overall tests . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.12.2 Tests of Additional Information . . . . . . . . . . . . . . . 203

5.12.3 Results and Interpretation . . . . . . . . . . . . . . . . . . 204

5.13 Stepdown Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.14 Repeated Measures Analysis . . . . . . . . . . . . . . . . . . . . . 208

5.14.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 209

5.15 Extended Linear Hypotheses . . . . . . . . . . . . . . . . . . . . . 216

5.15.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 219


X, Prediction . . . . . . . . . . . . . . . . . . . . 186
5.9.4 Overview - Candidate Model . . . . . . . . . . . . . . . . . 186

5.9.5 Prediction and Shrinkage . . . . . . . . . . . . . . . . . . . 187

5.10 Multivariate Regression: Influential Observations . . . . . . . . . . 189

5.10.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 191

5.11 Nonorthogonal MANOVA designs . . . . . . . . . . . . . . . . . . 192

5.11.1 Unweighted Analysis . . . . . . . . . . . . . . . . . . . . . 197

5.11.2 Weighted Analysis . . . . . . . . . . . . . . . . . . . . . . 198

5.12 MANCOVA Designs . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.12.1 Overall tests . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.12.2 Tests of Additional Information . . . . . . . . . . . . . . . 203

5.12.3 Results and Interpretation . . . . . . . . . . . . . . . . . . 204

5.13 Stepdown Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.14 Repeated Measures Analysis . . . . . . . . . . . . . . . . . . . . . 208

5.14.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 209

5.15 Extended Linear Hypotheses . . . . . . . . . . . . . . . . . . . . . 216

5.15.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 219

6 Doubly Multivariate Linear Model 223

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

6.2 Classical Model Development . . . . . . . . . . . . . . . . . . . . 223

6.3 Responsewise Model Development . . . . . . . . . . . . . . . . . . 226

6.4 The Multivariate Mixed Model . . . . . . . . . . . . . . . . . . . . 227

6.5 Double Multivariate and Mixed Models . . . . . . . . . . . . . . . 231

7 The Restricted MGLM and the Growth Curve Model 243

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

7.2 The Restricted Multivariate General Linear Model . . . . . . . . . . 243

7.3 The GMANOVA Model . . . . . . . . . . . . . . . . . . . . . . . 247

7.4 Canonical Form of the GMANOVA Model . . . . . . . . . . . . . . 253

7.5 Restricted Nonorthogonal Three-Factor Factorial MANOVA . . . . 259

7.5.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 269

7.6 Restricted Intraclass Covariance Design . . . . . . . . . . . . . . . 269

7.6.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 275

7.7 Growth Curve Analysis . . . . . . . . . . . . . . . . . . . . . . . . 279

7.7.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 283

7.8 Multiple Response Growth Curves . . . . . . . . . . . . . . . . . . 289

7.8.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 290

7.9 Single Growth Curve . . . . . . . . . . . . . . . . . . . . . . . . . 294

7.9.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 294

8 The SUR Model and the Restricted GMANOVA model 297

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

8.2 The MANOVA-GMANOVA Model . . . . . . . . . . . . . . . . . 297

8.3 Tests of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

8.4 Sum of Profiles and CGMANOVA Models . . . . . . . . . . . . . . 305

8.5 The SUR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

8.6 The Restricted GMANOVA Model . . . . . . . . . . . . . . . . . . 314

8.7 GMANOVA-SUR: One Population . . . . . . . . . . . . . . . . . . 317

8.7.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 317

8.8 GMANOVA-SUR: Several Populations . . . . . . . . . . . . . . . 319

8.8.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 319

8.9 SUR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

8.9.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 323

8.10 Two-Period Crossover Design with Changing Covariates . . . . . . 328

8.10.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 329

8.11 Repeated Measurements with Changing Covariates . . . . . . . . . 334

8.11.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 335

8.12 MANOVA-GMANOVA Model . . . . . . . . . . . . . . . . . . . . 337

8.12.1 Results and interpretation . . . . . . . . . . . . . . . . . . 338

8.13 CGMANOVA Model . . . . . . . . . . . . . . . . . . . . . . . . . 344

8.13.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 346

9 Simultaneous Inference Using Finite Intersection Tests 349

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

9.2 Finite Intersection Tests . . . . . . . . . . . . . . . . . . . . . . . . 349

9.3 Finite Intersection Tests of Univariate Means . . . . . . . . . . . . 350

9.4 Finite Intersection Tests for Linear Models . . . . . . . . . . . . . . 354

9.5 A Comparisons of Some Tests of Univariate Means . . . . . . . . . 355

9.5.1 Single-Step Methods . . . . . . . . . . . . . . . . . . . . . 355

9.5.2 Stepdown Methods . . . . . . . . . . . . . . . . . . . . . . 357

9.6 Analysis of Means Analysis . . . . . . . . . . . . . . . . . . . . . 358

9.7 Simultaneous Test Procedures for Mean Vectors . . . . . . . . . . . 360

9.8 Finite Intersection Test of Mean Vectors . . . . . . . . . . . . . . . 362

9.9 Finite Intersection Test of Mean Vectors with Covariates . . . . . . 366

9.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

9.11 Univariate: One-way ANOVA . . . . . . . . . . . . . . . . . . . . 369

9.12 Multivariate: One-way MANOVA . . . . . . . . . . . . . . . . . . 372

9.13 Multivariate: One-way MANCOVA . . . . . . . . . . . . . . . . . 379

10 Computing Power for Univariate and Multivariate GLM 381

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

10.2 Power for Univariate GLMs . . . . . . . . . . . . . . . . . . . . . 383

10.3 Estimating Power, Sample Size, and Effect Size for the GLM . . . . 384

10.3.1 Power and Sample Size . . . . . . . . . . . . . . . . . . . . 384

10.3.2 Effect Size . . . . . . . . . . . . . . . . . . . . . . . . . . 385

10.4 Power and Sample Size based upon Interval-Estimation . . . . . . . 388

10.5 Calculating Power and Sample Size for Some Mixed Models . . . . 390

10.5.1 Random One-Way ANOVA Design . . . . . . . . . . . . . 390

10.5.2 Two Factor Mixed Nested ANOVA Design . . . . . . . . . 396

10.6 Power for Multivariate GLMs . . . . . . . . . . . . . . . . . . . . 400

10.7 Power and Effect Size Analysis for Univariate GLMs . . . . . . . . 401

10.7.1 One-Way ANOVA . . . . . . . . . . . . . . . . . . . . . . 401

10.7.2 Three-Way ANOVA . . . . . . . . . . . . . . . . . . . . . 403

10.7.3 One-Way ANCOVA Design with two covariates . . . . . . 405

10.8 Power and Sample Size based upon Interval-Estimation . . . . . . . 405

10.8.1 One-Way ANOVA . . . . . . . . . . . . . . . . . . . . . . 407

10.9 Power Analysis for Multivariate GLMs . . . . . . . . . . . . . . . 409

10.9.1 Two Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 409

10.9.2 Repeated Measures Design . . . . . . . . . . . . . . . . . . 409

11 Two-level Hierarchical Linear Models 413

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

11.2 Two-level Hierarchical Linear Models . . . . . . . . . . . . . . . . 413

11.3 Random Coefficient Model: One Population . . . . . . . . . . . . . 424

11.4 Random Coefficient Model: Several Populations . . . . . . . . . . . 435

11.5 Mixed Model Repeated Measures . . . . . . . . . . . . . . . . . . 440

11.6 Mixed Model Repeated Measures with Changing Covariates . . . . 442

11.7 Two-Level Hierarchical Linear Models . . . . . . . . . . . . . . . . 443

12 Incomplete Repeated Measurement Data 455

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

12.2 Missing Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 456

12.3 An FGLS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 457

12.4 An ML Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

12.5 Imputations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

12.5.1 EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 462

12.5.2 Multiple Imputation . . . . . . . . . . . . . . . . . . . . . 463

12.6 Repeated Measures Analysis . . . . . . . . . . . . . . . . . . . . . 464

12.7 Repeated Measures with Changing Covariates . . . . . . . . . . . . 464

12.8 Random Coefficient Model . . . . . . . . . . . . . . . . . . . . . . 467

12.9 Growth Curve Analysis . . . . . . . . . . . . . . . . . . . . . . . . 471

13 Structural Equation Modeling 479

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

13.2 Model Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

13.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

13.4 Model Fit in Practice . . . . . . . . . . . . . . . . . . . . . . . . . 494

13.5 Model Modification . . . . . . . . . . . . . . . . . . . . . . . . . . 496

13.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498

13.7 Path Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

13.8 Confirmatory Factor Analysis . . . . . . . . . . . . . . . . . . . . . 503

13.9 General SEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

References 511


df for the F statistic in GLMMs . . . . . . . 118
4.5 Maximum Likelihood Estimation and Fisher’s Information Matrix . 119

4.6 WLSE for data Heteroscedasticity . . . . . . . . . . . . . . . . . . 121

4.7 WLSE for Correlated Errors . . . . . . . . . . . . . . . . . . . . . 124

4.8 FGLS for Categorical Data . . . . . . . . . . . . . . . . . . . . . . 127

4.8.1 Overview of the Categorical Data Model . . . . . . . . . . 127

4.8.2 Marginal Homogeneity . . . . . . . . . . . . . . . . . . . . 130

4.8.3 Homogeneity of Proportions . . . . . . . . . . . . . . . . . 132

4.8.4 Independence . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.8.5 Univariate Mixed Linear Model, Less than Full Rank Representation

. . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5 Multivariate General Linear Models 143

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2 Developing the Model . . . . . . . . . . . . . . . . . . . . . . . . 143

5.3 Estimation Theory and Hypothesis Testing . . . . . . . . . . . . . . 145

5.4 Multivariate Regression . . . . . . . . . . . . . . . . . . . . . . . . 152

5.5 Classical and Normal Multivariate Linear Regression Models . . . . 153

5.6 Jointly Multivariate Normal Regression Model . . . . . . . . . . . 163

5.7 Multivariate Mixed Models and the Analysis of Repeated Measurements

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.8 Extended Linear Hypotheses . . . . . . . . . . . . . . . . . . . . . 176

5.9 Multivariate Regression: Calibration and Prediction . . . . . . . . . 182

5.9.1 Fixed X . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.9.2 Random X . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.9.3 Random X, Prediction . . . . . . . . . . . . . . . . . . . . 186

5.9.4 Overview - Candidate Model . . . . . . . . . . . . . . . . . 186

5.9.5 Prediction and Shrinkage . . . . . . . . . . . . . . . . . . . 187

5.10 Multivariate Regression: Influential Observations . . . . . . . . . . 189

5.10.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 191

5.11 Nonorthogonal MANOVA designs . . . . . . . . . . . . . . . . . . 192

5.11.1 Unweighted Analysis . . . . . . . . . . . . . . . . . . . . . 197

5.11.2 Weighted Analysis . . . . . . . . . . . . . . . . . . . . . . 198

5.12 MANCOVA Designs . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.12.1 Overall tests . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.12.2 Tests of Additional Information . . . . . . . . . . . . . . . 203

5.12.3 Results and Interpretation . . . . . . . . . . . . . . . . . . 204

5.13 Stepdown Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.14 Repeated Measures Analysis . . . . . . . . . . . . . . . . . . . . . 208

5.14.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 209

5.15 Extended Linear Hypotheses . . . . . . . . . . . . . . . . . . . . . 216

5.15.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 219

 


X . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
5.9.2 Random X . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.9.3 Random X, Prediction . . . . . . . . . . . . . . . . . . . . 186

5.9.4 Overview - Candidate Model . . . . . . . . . . . . . . . . . 186

5.9.5 Prediction and Shrinkage . . . . . . . . . . . . . . . . . . . 187

5.10 Multivariate Regression: Influential Observations . . . . . . . . . . 189

5.10.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 191

5.11 Nonorthogonal MANOVA designs . . . . . . . . . . . . . . . . . . 192

5.11.1 Unweighted Analysis . . . . . . . . . . . . . . . . . . . . . 197

5.11.2 Weighted Analysis . . . . . . . . . . . . . . . . . . . . . . 198

5.12 MANCOVA Designs . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.12.1 Overall tests . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.12.2 Tests of Additional Information . . . . . . . . . . . . . . . 203

5.12.3 Results and Interpretation . . . . . . . . . . . . . . . . . . 204

5.13 Stepdown Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.14 Repeated Measures Analysis . . . . . . . . . . . . . . . . . . . . . 208

5.14.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 209

5.15 Extended Linear Hypotheses . . . . . . . . . . . . . . . . . . . . . 216

5.15.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 219

 

X . . . . . . . . . . . . . . . . . . . . . . . . . . 185
5.9.3 Random X, Prediction . . . . . . . . . . . . . . . . . . . . 186

5.9.4 Overview - Candidate Model . . . . . . . . . . . . . . . . . 186

5.9.5 Prediction and Shrinkage . . . . . . . . . . . . . . . . . . . 187

5.10 Multivariate Regression: Influential Observations . . . . . . . . . . 189

5.10.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 191

5.11 Nonorthogonal MANOVA designs . . . . . . . . . . . . . . . . . . 192

5.11.1 Unweighted Analysis . . . . . . . . . . . . . . . . . . . . . 197

5.11.2 Weighted Analysis . . . . . . . . . . . . . . . . . . . . . . 198

5.12 MANCOVA Designs . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.12.1 Overall tests . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.12.2 Tests of Additional Information . . . . . . . . . . . . . . . 203

5.12.3 Results and Interpretation . . . . . . . . . . . . . . . . . . 204

5.13 Stepdown Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.14 Repeated Measures Analysis . . . . . . . . . . . . . . . . . . . . . 208

5.14.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 209

5.15 Extended Linear Hypotheses . . . . . . . . . . . . . . . . . . . . . 216

5.15.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 219


X, Prediction . . . . . . . . . . . . . . . . . . . . 186
5.9.4 Overview - Candidate Model . . . . . . . . . . . . . . . . . 186

5.9.5 Prediction and Shrinkage . . . . . . . . . . . . . . . . . . . 187

5.10 Multivariate Regression: Influential Observations . . . . . . . . . . 189

5.10.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 191

5.11 Nonorthogonal MANOVA designs . . . . . . . . . . . . . . . . . . 192

5.11.1 Unweighted Analysis . . . . . . . . . . . . . . . . . . . . . 197

5.11.2 Weighted Analysis . . . . . . . . . . . . . . . . . . . . . . 198

5.12 MANCOVA Designs . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.12.1 Overall tests . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.12.2 Tests of Additional Information . . . . . . . . . . . . . . . 203

5.12.3 Results and Interpretation . . . . . . . . . . . . . . . . . . 204

5.13 Stepdown Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.14 Repeated Measures Analysis . . . . . . . . . . . . . . . . . . . . . 208

5.14.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 209

5.15 Extended Linear Hypotheses . . . . . . . . . . . . . . . . . . . . . 216

5.15.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 219

6 Doubly Multivariate Linear Model 223

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

6.2 Classical Model Development . . . . . . . . . . . . . . . . . . . . 223

6.3 Responsewise Model Development . . . . . . . . . . . . . . . . . . 226

6.4 The Multivariate Mixed Model . . . . . . . . . . . . . . . . . . . . 227

6.5 Double Multivariate and Mixed Models . . . . . . . . . . . . . . . 231

7 The Restricted MGLM and the Growth Curve Model 243

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

7.2 The Restricted Multivariate General Linear Model . . . . . . . . . . 243

7.3 The GMANOVA Model . . . . . . . . . . . . . . . . . . . . . . . 247

7.4 Canonical Form of the GMANOVA Model . . . . . . . . . . . . . . 253

7.5 Restricted Nonorthogonal Three-Factor Factorial MANOVA . . . . 259

7.5.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 269

7.6 Restricted Intraclass Covariance Design . . . . . . . . . . . . . . . 269

7.6.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 275

7.7 Growth Curve Analysis . . . . . . . . . . . . . . . . . . . . . . . . 279

7.7.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 283

7.8 Multiple Response Growth Curves . . . . . . . . . . . . . . . . . . 289

7.8.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 290

7.9 Single Growth Curve . . . . . . . . . . . . . . . . . . . . . . . . . 294

7.9.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 294

8 The SUR Model and the Restricted GMANOVA model 297

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

8.2 The MANOVA-GMANOVA Model . . . . . . . . . . . . . . . . . 297

8.3 Tests of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

8.4 Sum of Profiles and CGMANOVA Models . . . . . . . . . . . . . . 305

8.5 The SUR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

8.6 The Restricted GMANOVA Model . . . . . . . . . . . . . . . . . . 314

8.7 GMANOVA-SUR: One Population . . . . . . . . . . . . . . . . . . 317

8.7.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 317

8.8 GMANOVA-SUR: Several Populations . . . . . . . . . . . . . . . 319

8.8.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 319

8.9 SUR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

8.9.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 323

8.10 Two-Period Crossover Design with Changing Covariates . . . . . . 328

8.10.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 329

8.11 Repeated Measurements with Changing Covariates . . . . . . . . . 334

8.11.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 335

8.12 MANOVA-GMANOVA Model . . . . . . . . . . . . . . . . . . . . 337

8.12.1 Results and interpretation . . . . . . . . . . . . . . . . . . 338

8.13 CGMANOVA Model . . . . . . . . . . . . . . . . . . . . . . . . . 344

8.13.1 Results and Interpretation . . . . . . . . . . . . . . . . . . 346

9 Simultaneous Inference Using Finite Intersection Tests 349

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

9.2 Finite Intersection Tests . . . . . . . . . . . . . . . . . . . . . . . . 349

9.3 Finite Intersection Tests of Univariate Means . . . . . . . . . . . . 350

9.4 Finite Intersection Tests for Linear Models . . . . . . . . . . . . . . 354

9.5 A Comparisons of Some Tests of Univariate Means . . . . . . . . . 355

9.5.1 Single-Step Methods . . . . . . . . . . . . . . . . . . . . . 355

9.5.2 Stepdown Methods . . . . . . . . . . . . . . . . . . . . . . 357

9.6 Analysis of Means Analysis . . . . . . . . . . . . . . . . . . . . . 358

9.7 Simultaneous Test Procedures for Mean Vectors . . . . . . . . . . . 360

9.8 Finite Intersection Test of Mean Vectors . . . . . . . . . . . . . . . 362

9.9 Finite Intersection Test of Mean Vectors with Covariates . . . . . . 366

9.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

9.11 Univariate: One-way ANOVA . . . . . . . . . . . . . . . . . . . . 369

9.12 Multivariate: One-way MANOVA . . . . . . . . . . . . . . . . . . 372

9.13 Multivariate: One-way MANCOVA . . . . . . . . . . . . . . . . . 379

10 Computing Power for Univariate and Multivariate GLM 381

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

10.2 Power for Univariate GLMs . . . . . . . . . . . . . . . . . . . . . 383

10.3 Estimating Power, Sample Size, and Effect Size for the GLM . . . . 384

10.3.1 Power and Sample Size . . . . . . . . . . . . . . . . . . . . 384

10.3.2 Effect Size . . . . . . . . . . . . . . . . . . . . . . . . . . 385

10.4 Power and Sample Size based upon Interval-Estimation . . . . . . . 388

10.5 Calculating Power and Sample Size for Some Mixed Models . . . . 390

10.5.1 Random One-Way ANOVA Design . . . . . . . . . . . . . 390

10.5.2 Two Factor Mixed Nested ANOVA Design . . . . . . . . . 396

10.6 Power for Multivariate GLMs . . . . . . . . . . . . . . . . . . . . 400

10.7 Power and Effect Size Analysis for Univariate GLMs . . . . . . . . 401

10.7.1 One-Way ANOVA . . . . . . . . . . . . . . . . . . . . . . 401

10.7.2 Three-Way ANOVA . . . . . . . . . . . . . . . . . . . . . 403

10.7.3 One-Way ANCOVA Design with two covariates . . . . . . 405

10.8 Power and Sample Size based upon Interval-Estimation . . . . . . . 405

10.8.1 One-Way ANOVA . . . . . . . . . . . . . . . . . . . . . . 407

10.9 Power Analysis for Multivariate GLMs . . . . . . . . . . . . . . . 409

10.9.1 Two Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 409

10.9.2 Repeated Measures Design . . . . . . . . . . . . . . . . . . 409

11 Two-level Hierarchical Linear Models 413

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

11.2 Two-level Hierarchical Linear Models . . . . . . . . . . . . . . . . 413

11.3 Random Coefficient Model: One Population . . . . . . . . . . . . . 424

11.4 Random Coefficient Model: Several Populations . . . . . . . . . . . 435

11.5 Mixed Model Repeated Measures . . . . . . . . . . . . . . . . . . 440

11.6 Mixed Model Repeated Measures with Changing Covariates . . . . 442

11.7 Two-Level Hierarchical Linear Models . . . . . . . . . . . . . . . . 443

12 Incomplete Repeated Measurement Data 455

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

12.2 Missing Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 456

12.3 An FGLS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 457

12.4 An ML Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

12.5 Imputations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

12.5.1 EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 462

12.5.2 Multiple Imputation . . . . . . . . . . . . . . . . . . . . . 463

12.6 Repeated Measures Analysis . . . . . . . . . . . . . . . . . . . . . 464

12.7 Repeated Measures with Changing Covariates . . . . . . . . . . . . 464

12.8 Random Coefficient Model . . . . . . . . . . . . . . . . . . . . . . 467

12.9 Growth Curve Analysis . . . . . . . . . . . . . . . . . . . . . . . . 471

13 Structural Equation Modeling 479

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

13.2 Model Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

13.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

13.4 Model Fit in Practice . . . . . . . . . . . . . . . . . . . . . . . . . 494

13.5 Model Modification . . . . . . . . . . . . . . . . . . . . . . . . . . 496

13.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498

13.7 Path Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

13.8 Confirmatory Factor Analysis . . . . . . . . . . . . . . . . . . . . . 503

13.9 General SEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

References 511

下载地址
顶一下
(2)
100%
踩一下
(0)
0%
------分隔线----------------------------