3 SAS系统的主要模块
SAS系统包含了众多的不同的模块,可完成不同的任务,主要模块有:
 SAS/BASE(基础)——初步的统计分析;
 SAS/STAT(统计)——广泛的统计分析;
 SAS/QC(质量控制)——质量管理方面的专门分析计算;
 SAS/OR(规划)——运筹决策方面的专门分析计算;
 SAS/ETS(预测)——计量经济的时间序列方面的专门分析计算;
 SAS/IML(距阵运算)——提供了交互矩阵语言;
 SAS/GRAPH(图形)——提供了许多产生图形过程并支持众多图形设备;
 SAS/ACCESS(外部数据库接口)——提供了与大多数流行数据库管理系统的方便接口并自身也能进行数据管理;
 SAS/ASSIST(面向任务的通用菜单驱动界面)——方便用户以菜单方式进行操作;
 SAS/FSP(数据处理交互式菜单系统)
 SAS/AF(面向对象编程的应用开发工具)
另外SAS系统还将许多常用的统计方法分别集成为两个模块LAB和INSIGHT,供用户利用图形界面和菜单直接对数据进行统计分析
1 SAS系统的支持技术
在当今的信息时代中,如何有效地利用业务高度自动化所产生的巨量宝贵数据,挖掘出对预测和决策有用的信息,就成为掌握竞争主导权的关键因素。因此,SAS系统始终致力于应用先进的信息技术和计算机技术对业务和历史数据进行更深层次的加工。经过二十多年的发展,SAS系统现在是以下三种技术的主要提供者:
 数据仓库技术(Data Warehouse)
数据仓库是用于支持管理决策过程的面向主题的、集成的、随时间而变化的、持久的(非易失的)数据集合。通俗的说,可以将数据仓库理解为“将多个生产数据源中的数据按一定规则统一集中起来,并提供灵活的观察分析数据手段,从而为企业制定决策提供事实数据的支持。”
数据仓库最大的用途是能够提供给用户一种全新的方式从宏观或微观的角度来观察多年积累的数据,从而使用户可以迅速地掌握自己企业的经营运转状况、运营成本、利润分布、市场占有率、发展趋势等对企业发展和决策有重要意义的信息,使用户能制定更加准确科学的决策迅速对市场做出反应。利用数据仓库技术可以使大企业运作的像小企业一样灵活,也可以使小企业像大企业一样规范。从目前情况来看,许多企业和机构已经建立了相对完善的生产数据库系统。随着时间的推移,这些系统中积累了大量的历史数据,其中蕴含了许多重要的信息。利用数据仓库技术对这些历史数据进行分析和综合处理,可以找到那些对企业发展至关重要的业务信息,从而帮助有关主管和业务部门做出更加合理的决策。
当今世界充满了剧烈竞争,正确及时的决策是企业生存和发展的最重要环节。现在,愈来愈多的企业认识到,企业要想在竞争中取胜,获得更大的收益,至关重要的是,必须利用计算机和网络技术、数据仓库技术,深层次地挖掘、分析当前和历史的生产业务数据,以及相关环境的相关数据,自动快速获取其中有用的决策信息,为企业提供快速、准确和方便的决策支持。通过对企业生产和计划的完成情况及相关环境数据进行多角度多层次的分析,以使企业的决策者及时掌握企业的运行情况和发展趋势,并对制定生产计划和长远规划提供理论指导,提高企业的管理水平和竞争优势。
 数据挖掘技术(Data Mining)
数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。还有很多和这一术语相近似的术语,如从数据库中发现知识(KDD)、数据分析、数据融合(Data Fusion)以及决策支持等。
数据挖掘是一门很广义的交叉学科,它汇聚了不同领域的研究者,尤其是数据库、人工智能、数理统计、可视化、并行计算等方面的学者和工程技术人员。
DMKD的研究主要有3个技术支柱,即数据库、人工智能和数理统计。
数据库最实质的应用仅仅是查询吗?理论根基最深的关系数据库最本质的技术进步点,就是数据存放和数据使用之间的相互分离。查询是数据库的奴隶,发现才是数据库的主人。因此,在需求的驱动下,很多数据库学者转向对数据仓库和数据挖掘的研究,从对演绎数据库的研究转向对归纳数据库的研究。
专家系统曾经是人工智能研究工作者的骄傲。专家系统实质上是一个问题求解系统,目前的主要理论工具是基于谓词演算的机器定理证明技术。在研制一个专家系统时,知识工程师首先要从领域专家那里获取知识,这一过程实质上是归纳过程,是非常复杂的个人到个人之间的交互过程,有很强的个性和随机性。因此,知识获取成为专家系统研究中公认的瓶颈问题。用if-then等类的规则表达,约束性太大,用常规数理逻辑来表达社会现象和人的思维活动局限性太大,知识表示又成为一大难题。此外,即使某个领域的知识通过一定手段获取并表达了,但这样做成的专家系统对常识和百科知识出奇地贫乏。人工智能学者开始着手基于案例的推理,尤其是从事机器学习的科学家们,不再满足自己构造的小样本学习模式的象牙塔,开始正视现实生活中大量的、不完全的、有噪声的、模糊的、随机的大数据样本,也走上了数据挖掘的道路。
数理统计是应用数学中最重要、最活跃的学科之一,如今相当强大有效的数理统计方法和工具,已成为信息咨询业的基础。信息时代,咨询业更为发达。然而,数理统计和数据库技术结合得并不算快,咨询业用数据库查询数据还远远不够。一旦人们有了从数据查询到知识发现、从数据演绎到数据归纳的要求,概率论和数理统计就获得了新的生命力,所以才会立即呈现在DMKD这个结合点上。
发现工具和方法,常用的有分类、聚类、减维、模式识别、可视化、决策树、遗传算法、不确定性处理等。
 决策支持技术(Decision Support System)
决策支持系统通过结合个人的智力资源和计算机的能力来改进决策的质量。它是一个基于计算机的支持系统,服务于处理半结构化问题的管理决策制定者。
管理的核心是“决策”。全球经济一体化的进程以及信息技术的发展,消除了许多流通壁垒。企业比以往任何时候都面临着更为复杂的生存环境,更难以形成并维护其竞争壁垒。竞争的压力对企业制定决策的质量、速度都有更高要求。
决策支持系统作为一种新兴的信息技术,能够为企业提供各种决策信息以及许多商业问题的解决方案,从而减轻了管理者从事低层次信息处理和分析的负担,使得他们专注于最需要决策智慧和经验的工作,因此提高了决策的质量和效率。 |