Contents
Preface to the Second Edition v
1 Introduction 1
1.1 What are functional data? . . . . . . . . . . . . . . . . . 1
1.2 Functional models for nonfunctional data . . . . . . . . . 5
1.3 Some functional data analyses . . . . . . . . . . . . . . . 5
1.4 The goals of functional data analysis . . . . . . . . . . . 9
1.5 The first steps in a functional data analysis . . . . . . . . 11
1.5.1 Data representation: smoothing and interpolation 11
1.5.2 Data registration or feature alignment . . . . . . 12
1.5.3 Data display . . . . . . . . . . . . . . . . . . . . . 13
1.5.4 Plotting pairs of derivatives . . . . . . . . . . . . 13
1.6 Exploring variability in functional data . . . . . . . . . . 15
1.6.1 Functional descriptive statistics . . . . . . . . . . 15
1.6.2 Functional principal components analysis . . . . . 15
1.6.3 Functional canonical correlation . . . . . . . . . . 16
1.7 Functional linear models . . . . . . . . . . . . . . . . . . 16
1.8 Using derivatives in functional data analysis . . . . . . . 17
1.9 Concluding remarks . . . . . . . . . . . . . . . . . . . . . 18
2 Tools for exploring functional data 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Some notation . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Scalars, vectors, functions and matrices . . . . . . 20
2.2.2 Derivatives and integrals . . . . . . . . . . . . . . 20
2.2.3 Inner products . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Functions of functions . . . . . . . . . . . . . . . 21
2.3 Summary statistics for functional data . . . . . . . . . . 22
2.3.1 Functional means and variances . . . . . . . . . . 22
2.3.2 Covariance and correlation functions . . . . . . . 22
2.3.3 Cross-covariance and cross-correlation functions . 24
2.4 The anatomy of a function . . . . . . . . . . . . . . . . . 26
2.4.1 Functional features . . . . . . . . . . . . . . . . . 26
2.4.2 Data resolution and functional dimensionality . . 27
2.4.3 The size of a function . . . . . . . . . . . . . . . . 28
2.5 Phase-plane plots of periodic effects . . . . . . . . . . . . 29
2.5.1 The log nondurable goods index . . . . . . . . . . 29
2.5.2 Phase?Vplane plots show energy transfer . . . . . . 30
2.5.3 The nondurable goods cycles . . . . . . . . . . . . 33
2.6 Further reading and notes . . . . . . . . . . . . . . . . . 34
3 From functional data to smooth functions 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Some properties of functional data . . . . . . . . . . . . 38
3.2.1 What makes discrete data functional? . . . . . . . 38
3.2.2 Samples of functional data . . . . . . . . . . . . . 39
3.2.3 The interplay between smooth and noisy variation 39
3.2.4 The standard model for error and its limitations . 40
3.2.5 The resolving power of data . . . . . . . . . . . . 41
3.2.6 Data resolution and derivative estimation . . . . 41
3.3 Representing functions by basis functions . . . . . . . . . 43
3.4 The Fourier basis systemfor periodic data . . . . . . . . 45
3.5 The spline basis systemfor open-ended data . . . . . . . 46
3.5.1 Spline functions and degrees of freedom . . . . . . 47
3.5.2 The B-spline basis for spline functions . . . . . . 49
3.6 Other useful basis systems . . . . . . . . . . . . . . . . . 53
3.6.1 Wavelets . . . . . . . . . . . . . . . . . . . . . . . 53
3.6.2 Exponential and power bases . . . . . . . . . . . 54
3.6.3 Polynomial bases . . . . . . . . . . . . . . . . . . 54
3.6.4 The polygonal basis . . . . . . . . . . . . . . . . . 55
3.6.5 The step-function basis . . . . . . . . . . . . . . . 55
3.6.6 The constant basis . . . . . . . . . . . . . . . . . 55
3.6.7 Empirical and designer bases . . . . . . . . . . . . 56
3.7 Choosing a scale for t . . . . . . . . . . . . . . . . . . . . 56
3.8 Further reading and notes . . . . . . . . . . . . . . . . . 57
4 Smoothing functional data by least squares 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Fitting data using a basis systemby least squares . . . . 59
4.2.1 Ordinary or unweighted least squares fits . . . . . 60
4.2.2 Weighted least squares fits . . . . . . . . . . . . . 61
4.3 A performance assessment of least squares smoothing . . 62
4.4 Least squares fits as linear transformations of the data . 63
4.4.1 How linear smoothers work . . . . . . . . . . . . . 64
4.4.2 The degrees of freedomof a linear smooth . . . . 66
4.5 Choosing the number K of basis functions . . . . . . . . 67
4.5.1 The bias/variance trade-off . . . . . . . . . . . . . 67
4.5.2 Algorithms for choosing K . . . . . . . . . . . . . 69
4.6 Computing sampling variances and confidence limits . . 70
4.6.1 Sampling variance estimates . . . . . . . . . . . . 70
4.6.2 Estimating ?Ue . . . . . . . . . . . . . . . . . . . . 71
4.6.3 Confidence limits . . . . . . . . . . . . . . . . . . 72
4.7 Fitting data by localized least squares . . . . . . . . . . . 73
4.7.1 Kernel smoothing . . . . . . . . . . . . . . . . . . 74
4.7.2 Localized basis function estimators . . . . . . . . 76
4.7.3 Local polynomial smoothing . . . . . . . . . . . . 77
4.7.4 Choosing the bandwidth h . . . . . . . . . . . . . 78
4.7.5 Summary of localized basismethods . . . . . . . 78
4.8 Further reading and notes . . . . . . . . . . . . . . . . . 79
5 Smoothing functional data with a roughness penalty 81
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Spline smoothing . . . . . . . . . . . . . . . . . . . . . . 82
5.2.1 Two competing objectives in function estimation 83
5.2.2 Quantifying roughness . . . . . . . . . . . . . . . 84
5.2.3 The penalized sum of squared errors fitting criterion 84
5.2.4 The structure of a smoothing spline . . . . . . . . 85
5.2.5 How spline smooths are computed . . . . . . . . . 86
5.2.6 Spline smoothing as a linear operation . . . . . . 87
5.2.7 Spline smoothing as an augmented least squares
problem . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.8 Estimating derivatives by spline smoothing . . . . 90
5.3 Some extensions . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.1 Roughness penalties with fewer basis functions . . 91
5.3.2 More general measures of data fit . . . . . . . . . 92
5.3.3 More general roughness penalties . . . . . . . . . 92
5.3.4 Computing the roughness penalty matrix . . . . . 93
5.4 Choosing the smoothing parameter . . . . . . . . . . . . 94
5.4.1 Some limits imposed by computational issues . . 94
5.4.2 The cross-validation or CVmethod . . . . . . . . 96
5.4.3 The generalized cross-validation or GCV method 97
5.4.4 Spline smoothing the simulated growth data . . . 99
5.5 Confidence intervals for function values and functional
probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.5.1 Linear functional probes . . . . . . . . . . . . . . 101
5.5.2 Two linear mappings defining a probe value . . . 102
5.5.3 Computing confidence limits for function values . 103
5.5.4 Confidence limits for growth acceleration . . . . . 104
5.6 A bi-resolution analysis with smoothing splines . . . . . 104
5.6.1 Complementary bases . . . . . . . . . . . . . . . . 105
5.6.2 Specifying the roughness penalty . . . . . . . . . 106
5.6.3 Some properties of the estimates . . . . . . . . . 107
5.6.4 Relationship to the roughness penalty approach . 108
5.7 Further reading and notes . . . . . . . . . . . . . . . . . 109
6 Constrained functions 111
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Fitting positive functions . . . . . . . . . . . . . . . . . . 111
6.2.1 A positive smoothing spline . . . . . . . . . . . . 113
6.2.2 Representing a positive function by a differential
equation . . . . . . . . . . . . . . . . . . . . . . . 114
6.3 Fitting strictly monotone functions . . . . . . . . . . . . 115
6.3.1 Fitting the growth of a babyˇs tibia . . . . . . . . 115
6.3.2 Expressing a strictly monotone function explicitly 115
6.3.3 Expressing a strictly monotone function as a differential
equation . . . . . . . . . . . . . . . . . . . 116
6.4 The performance of spline smoothing revisited . . . . . . 117
6.5 Fitting probability functions . . . . . . . . . . . . . . . . 118
6.6 Estimating probability density functions . . . . . . . . . 119
6.7 Functional data analysis of point processes . . . . . . . . 121
6.8 Fitting a linear model with estimation of the density of
residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.9 Further notes and readings . . . . . . . . . . . . . . . . . 126
7 The registration and display of functional data 127
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2 Shift registration . . . . . . . . . . . . . . . . . . . . . . 129
7.2.1 The least squares criterion for shift alignment . . 131
7.3 Feature or landmark registration . . . . . . . . . . . . . . 132
7.4 Using the warping function h to register x . . . . . . . . 137
7.5 A more general warping function h . . . . . . . . . . . . 137
7.6 A continuous fitting criterion for registration . . . . . . . 138
7.7 Registering the height acceleration curves . . . . . . . . . 140
7.8 Some practical advice . . . . . . . . . . . . . . . . . . . . 142
7.9 Computational details . . . . . . . . . . . . . . . . . . . 142
7.9.1 Shift registration by the Newton-Raphson algorithm 142
7.10 Further reading and notes . . . . . . . . . . . . . . . . . 144
8 Principal components analysis for functional data 147
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.2 Defining functional PCA . . . . . . . . . . . . . . . . . . 148
8.2.1 PCA for multivariate data . . . . . . . . . . . . . 148
8.2.2 Defining PCA for functional data . . . . . . . . . 149
8.2.3 Defining an optimal empirical orthonormal basis . 151
8.2.4 PCA and eigenanalysis . . . . . . . . . . . . . . . 152
8.3 Visualizing the results . . . . . . . . . . . . . . . . . . . 154
8.3.1 Plotting components as perturbations of the mean 154
8.3.2 Plotting principal component scores . . . . . . . . 156
8.3.3 Rotating principal components . . . . . . . . . . 156
8.4 Computational methods for functional PCA . . . . . . . 160
8.4.1 Discretizing the functions . . . . . . . . . . . . . 161
8.4.2 Basis function expansion of the functions . . . . . 161
8.4.3 More general numerical quadrature . . . . . . . . 164
8.5 Bivariate and multivariate PCA . . . . . . . . . . . . . . 166
8.5.1 Defining multivariate functional PCA . . . . . . . 167
8.5.2 Visualizing the results . . . . . . . . . . . . . . . 168
8.5.3 Inner product notation: Concluding remarks . . . 170
8.6 Further readings and notes . . . . . . . . . . . . . . . . . 171
9 Regularized principal components analysis 173
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 173
9.2 The results of smoothing the PCA. . . . . . . . . . . . . 175
9.3 The smoothing approach . . . . . . . . . . . . . . . . . . 177
9.3.1 Estimating the leading principal component . . . 177
9.3.2 Estimating subsequent principal components . . . 177
9.3.3 Choosing the smoothing parameter by CV . . . . 178
9.4 Finding the regularized PCA in practice . . . . . . . . . 179
9.4.1 The periodic case . . . . . . . . . . . . . . . . . . 179
9.4.2 The nonperiodic case . . . . . . . . . . . . . . . . 181
9.5 Alternative approaches . . . . . . . . . . . . . . . . . . . 182
9.5.1 Smoothing the data rather than the PCA . . . . 182
9.5.2 A stepwise roughness penalty procedure . . . . . 184
9.5.3 A further approach . . . . . . . . . . . . . . . . . 185
10 Principal components analysis of mixed data 187
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 187
10.2 General approaches tomixed data . . . . . . . . . . . . . 189
10.3 The PCA of hybrid data . . . . . . . . . . . . . . . . . . 190
10.3.1 Combining function and vector spaces . . . . . . 190
10.3.2 Finding the principal components in practice . . . 191
10.3.3 Incorporating smoothing . . . . . . . . . . . . . . 192
10.3.4 Balance between functional and vector variation . 192
10.4 Combining registration and PCA . . . . . . . . . . . . . 194
10.4.1 Expressing the observations as mixed data . . . . 194
10.4.2 Balancing temperature and time shift effects . . . 194
10.5 The temperature data reconsidered . . . . . . . . . . . . 195
10.5.1 Taking account of effects beyond phase shift . . . 195
10.5.2 Separating out the vector component . . . . . . . 198
11 Canonical correlation and discriminant analysis 201
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 201
11.1.1 The basic problem . . . . . . . . . . . . . . . . . 201
11.2 Principles of classical CCA . . . . . . . . . . . . . . . . . 204
11.3 Functional canonical correlation analysis . . . . . . . . . 204
11.3.1 Notation and assumptions . . . . . . . . . . . . . 204
11.3.2 The naive approach does not give meaningful results 205
11.3.3 Choice of the smoothing parameter . . . . . . . . 206
11.3.4 The values of the correlations . . . . . . . . . . . 207
11.4 Application to the study of lupus nephritis . . . . . . . . 208
11.5 Why is regularization necessary? . . . . . . . . . . . . . . 209
11.6 Algorithmic considerations . . . . . . . . . . . . . . . . . 210
11.6.1 Discretization and basis approaches . . . . . . . . 210
11.6.2 The roughness of the canonical variates . . . . . . 211
11.7 Penalized optimal scoring and discriminant analysis . . . 213
11.7.1 The optimal scoring problem. . . . . . . . . . . . 213
11.7.2 The discriminant problem . . . . . . . . . . . . . 214
11.7.3 The relationship with CCA . . . . . . . . . . . . 214
11.7.4 Applications . . . . . . . . . . . . . . . . . . . . . 215
11.8 Further readings and notes . . . . . . . . . . . . . . . . . 215
12 Functional linear models 217
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 217
12.2 A functional response and a categorical independent variable
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
12.3 A scalar response and a functional independent variable 219
12.4 A functional response and a functional independent variable 220
12.4.1 Concurrent . . . . . . . . . . . . . . . . . . . . . . 220
12.4.2 Annual or total . . . . . . . . . . . . . . . . . . . 220
12.4.3 Short-termfeed-forward . . . . . . . . . . . . . . 220
12.4.4 Local influence . . . . . . . . . . . . . . . . . . . 221
12.5 What about predicting derivatives? . . . . . . . . . . . . 221
12.6 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
13 Modelling functional responses with multivariate covariates
223
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 223
13.2 Predicting temperature curves fromclimate zones . . . . 223
13.2.1 Fitting themodel . . . . . . . . . . . . . . . . . . 225
13.2.2 Assessing the fit . . . . . . . . . . . . . . . . . . . 225
13.3 Force plate data for walking horses . . . . . . . . . . . . 229
13.3.1 Structure of the data . . . . . . . . . . . . . . . . 229
13.3.2 A functional linear model for the horse data . . . 231
13.3.3 Effects and contrasts . . . . . . . . . . . . . . . . 233
13.4 Computational issues . . . . . . . . . . . . . . . . . . . . 235
13.4.1 The general model . . . . . . . . . . . . . . . . . 235
13.4.2 Pointwiseminimization . . . . . . . . . . . . . . . 236
13.4.3 Functional linear modelling with regularized basis
expansions . . . . . . . . . . . . . . . . . . . . . . 236
13.4.4 Using the Kronecker product to express .B . . . . 238
13.4.5 Fitting the raw data . . . . . . . . . . . . . . . . 239
13.5 Confidence intervals for regression functions . . . . . . . 239
13.5.1 How to compute confidence intervals . . . . . . . 239
13.5.2 Confidence intervals for climate zone effects . . . 241
13.5.3 Some cautions on interpreting confidence intervals 243
13.6 Further reading and notes . . . . . . . . . . . . . . . . . 244
14 Functional responses, functional covariates and the concurrent
model 247
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 247
14.2 Predicting precipitation profiles from temperature curves 248
14.2.1 The model for the daily logarithm of rainfall . . . 248
14.2.2 Preliminary steps . . . . . . . . . . . . . . . . . . 248
14.2.3 Fitting the model and assessing fit . . . . . . . . 250
14.3 Long-term and seasonal trends in the nondurable goods
index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
14.4 Computational issues . . . . . . . . . . . . . . . . . . . . 255
14.5 Confidence intervals . . . . . . . . . . . . . . . . . . . . . 257
14.6 Further reading and notes . . . . . . . . . . . . . . . . . 258
15 Functional linear models for scalar responses 261
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 261
15.2 A naive approach: Discretizing the covariate function . . 262
15.3 Regularization using restricted basis functions . . . . . . 264
15.4 Regularization with roughness penalties . . . . . . . . . . 266
15.5 Computational issues . . . . . . . . . . . . . . . . . . . . 268
15.5.1 Computing the regularized solution . . . . . . . . 269
15.5.2 Computing confidence limits . . . . . . . . . . . . 270
15.6 Cross-validation and regression diagnostics . . . . . . . . 270
15.7 The direct penalty method for computing ?] . . . . . . . 271
15.7.1 Functional interpolation . . . . . . . . . . . . . . 272
15.7.2 The two-stage minimization process . . . . . . . . 272
15.7.3 Functional interpolation revisited . . . . . . . . . 273
15.8 Functional regression and integral equations . . . . . . . 275
xvi Contents
15.9 Further reading and notes . . . . . . . . . . . . . . . . . 276
16 Functional linear models for functional responses 279
16.1 Introduction: Predicting log precipitation from temperature
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
16.1.1 Fitting themodel without regularization . . . . . 280
16.2 Regularizing the fit by restricting the bases . . . . . . . . 282
16.2.1 Restricting the basis ?b(s) . . . . . . . . . . . . . 282
16.2.2 Restricting the basis ?c(t) . . . . . . . . . . . . . . 283
16.2.3 Restricting both bases . . . . . . . . . . . . . . . 284
16.3 Assessing goodness of fit . . . . . . . . . . . . . . . . . . 285
16.4 Computational details . . . . . . . . . . . . . . . . . . . 290
16.4.1 Fitting themodel without regularization . . . . . 291
16.4.2 Fitting themodel with regularization . . . . . . . 292
16.5 The general case . . . . . . . . . . . . . . . . . . . . . . . 293
16.6 Further reading and notes . . . . . . . . . . . . . . . . . 295
17 Derivatives and functional linear models 297
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 297
17.2 The oil refinery data . . . . . . . . . . . . . . . . . . . . 298
17.3 Themelanoma data . . . . . . . . . . . . . . . . . . . . . 301
17.4 Some comparisons of the refinery and melanoma analyses 305
18 Differential equations and operators 307
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 307
18.2 Exploring a simple linear differential equation . . . . . . 308
18.3 Beyond the constant coefficient first-order linear equation 310
18.3.1 Nonconstant coefficients . . . . . . . . . . . . . . 310
18.3.2 Higher order equations . . . . . . . . . . . . . . . 311
18.3.3 Systems of equations . . . . . . . . . . . . . . . . 312
18.3.4 Beyond linearity . . . . . . . . . . . . . . . . . . . 313
18.4 Some applications of linear differential equations and
operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
18.4.1 Differential operators to produce new functional
observations . . . . . . . . . . . . . . . . . . . . . 313
18.4.2 The gross domestic product data . . . . . . . . . 314
18.4.3 Differential operators to regularize or smooth models
. . . . . . . . . . . . . . . . . . . . . . . . . . 316
18.4.4 Differential operators to partition variation . . . . 317
18.4.5 Operators to define solutions to problems . . . . 319
18.5 Some linear differential equation facts . . . . . . . . . . . 319
18.5.1 Derivatives are rougher . . . . . . . . . . . . . . . 319
18.5.2 Finding a linear differential operator that annihilates
known functions . . . . . . . . . . . . . . . . 320
18.5.3 Finding the functions ?ij satisfying L?ij =0 . . . 322
18.6 Initial conditions, boundary conditions and other constraints
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
18.6.1 Why additional constraints are needed to define a
solution . . . . . . . . . . . . . . . . . . . . . . . 323
18.6.2 How L and B partition functions . . . . . . . . . 324
18.6.3 The inner product defined by operators L and B 325
18.7 Further reading and notes . . . . . . . . . . . . . . . . . 325
19 Principal differential analysis 327
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 327
19.2 Defining the problem . . . . . . . . . . . . . . . . . . . . 328
19.3 A principal differential analysis of lip movement . . . . . 329
19.3.1 The biomechanics of lip movement . . . . . . . . 330
19.3.2 Visualizing the PDA results . . . . . . . . . . . . 332
19.4 PDA of the pinch force data . . . . . . . . . . . . . . . . 334
19.5 Techniques for principal differential analysis . . . . . . . 338
19.5.1 PDA by point-wiseminimization . . . . . . . . . 338
19.5.2 PDA using the concurrent functional linear model 339
19.5.3 PDA by iterating the concurrent linear model . . 340
19.5.4 Assessing fit in PDA . . . . . . . . . . . . . . . . 343
19.6 Comparing PDA and PCA . . . . . . . . . . . . . . . . . 343
19.6.1 PDA and PCA both minimize sums of squared
errors . . . . . . . . . . . . . . . . . . . . . . . . . 343
19.6.2 PDA and PCA both involve finding linear operators 344
19.6.3 Differences between differential operators (PDA)
and projection operators (PCA) . . . . . . . . . . 345
19.7 Further readings and notes . . . . . . . . . . . . . . . . . 348
20 Greenˇs functions and reproducing kernels 349
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 349
20.2 The Greenˇs function for solving a linear differential
equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
20.2.1 The definition of the Greenˇs function . . . . . . . 351
20.2.2 A matrix analogue of the Greenˇs function . . . . 352
20.2.3 A recipe for the Greenˇs function . . . . . . . . . 352
20.3 Reproducing kernels and Greenˇs functions . . . . . . . . 353
20.3.1 What is a reproducing kernel? . . . . . . . . . . . 354
20.3.2 The reproducing kernel for kerB . . . . . . . . . 355
20.3.3 The reproducing kernel for kerL . . . . . . . . . . 356
20.4 Further reading and notes . . . . . . . . . . . . . . . . . 357
21 More general roughness penalties 359
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 359
21.1.1 The lip movement data . . . . . . . . . . . . . . . 360
21.1.2 The weather data . . . . . . . . . . . . . . . . . . 361
21.2 The optimal basis for spline smoothing . . . . . . . . . . 363
21.3 An O(n) algorithm for L-spline smoothing . . . . . . . . 364
21.3.1 The need for a good algorithm. . . . . . . . . . . 364
21.3.2 Setting up the smoothing procedure . . . . . . . . 366
21.3.3 The smoothing phase . . . . . . . . . . . . . . . . 367
21.3.4 The performance assessment phase . . . . . . . . 367
21.3.5 Other O(n) algorithms . . . . . . . . . . . . . . . 369
21.4 A compact support basis for L-splines . . . . . . . . . . . 369
21.5 Some case studies . . . . . . . . . . . . . . . . . . . . . . 370
21.5.1 The gross domestic product data . . . . . . . . . 370
21.5.2 Themelanoma data . . . . . . . . . . . . . . . . . 371
21.5.3 The GDP data with seasonal effects . . . . . . . . 373
21.5.4 Smoothing simulated human growth data . . . . 374
22 Some perspectives on FDA 379
22.1 The context of functional data analysis . . . . . . . . . . 379
22.1.1 Replication and regularity . . . . . . . . . . . . . 379
22.1.2 Some functional aspects elsewhere in statistics . . 380
22.1.3 Functional analytic treatments . . . . . . . . . . . 381
22.2 Challenges for the future . . . . . . . . . . . . . . . . . . 382
22.2.1 Probability and inference . . . . . . . . . . . . . . 382
22.2.2 Asymptotic results . . . . . . . . . . . . . . . . . 383
22.2.3 Multidimensional arguments . . . . . . . . . . . . 383
22.2.4 Practical methodology and applications . . . . . . 384
22.2.5 Back to the data! . . . . . . . . . . . . . . . . . . 384
Appendix: Some algebraic and functional techniques 385
A.1 Inner products x, y . . . . . . . . . . . . . . . . . . . . 385
A.1.1 Some specific examples . . . . . . . . . . . . . . . 386
A.1.2 General properties . . . . . . . . . . . . . . . . . 387
A.1.3 Descriptive statistics in inner product notation . 389
A.1.4 Some extended uses of inner product notation . . 390
A.2 Further aspects of inner product spaces . . . . . . . . . . 391
A.2.1 Projections . . . . . . . . . . . . . . . . . . . . . . 391
A.2.2 Quadratic optimization . . . . . . . . . . . . . . . 392
A.3 Matrix decompositions and generalized inverses . . . . . 392
A.3.1 Singular value decompositions . . . . . . . . . . . 392
A.3.2 Generalized inverses . . . . . . . . . . . . . . . . . 393
A.3.3 The QR decomposition . . . . . . . . . . . . . . . 393
A.4 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . 394
A.4.1 Projection matrices . . . . . . . . . . . . . . . . . 394
A.4.2 Finding an appropriate projection matrix. . . . . 395
A.4.3 Projections in more general inner product spaces 395
A.5 Constrained maximization of a quadratic function . . . . 396
A.5.1 The finite-dimensional case . . . . . . . . . . . . . 396
A.5.2 The problemin amore general space . . . . . . . 396
A.5.3 Generalized eigenproblems . . . . . . . . . . . . . 397
A.6 Kronecker Products . . . . . . . . . . . . . . . . . . . . . 398
A.7 Themultivariate linear model . . . . . . . . . . . . . . . 399
A.7.1 Linear models from a transformation perspective 399
A.7.2 The least squares solution for B . . . . . . . . . . 400
A.8 Regularizing themultivariate linear model . . . . . . . . 401
A.8.1 Definition of regularization . . . . . . . . . . . . . 401
A.8.2 Hard-edged constraints . . . . . . . . . . . . . . . 401
A.8.3 Soft-edged constraints . . . . . . . . . . . . . . . 402
References 405
Index 419 |