PRMIA风险管理考试 的教材<<The Professional Risk Managers' Handbook>>第二册 
书名: The Professional Risk Managers’ Handbook 
A Comprehensive Guide to Current Theory and Best Practices 
Author: Carol Alexander (PRMIA现任主席) and Elizabeth Sheedy. 
Publisher: PRMIA Publications 
Volume II: Mathematical Foundations of 
Risk Measurement 
 
Contents 
Introduction ................................................................................................................................................8 
Preface to Volume II: Mathematical Foundations of Risk Measurement..............................10 
II.A Foundations ........................................................................................................................................13 
II.A.1 Symbols and Rules ..............................................................................................................13 
II.A.1.1 Expressions, Functions, Graphs, Equations and Greek......................................13 
II.A.1.2 The Algebra of Number............................................................................................15 
II.A.1.3 The Order of Operations..........................................................................................17 
II.A.2 Sequences and Series...........................................................................................................18 
II.A.2.1 Sequences ....................................................................................................................18 
II.A.2.2 Series............................................................................................................................19 
II.A.3 Exponents and Logarithms ...............................................................................................20 
II.A.3.1 Exponents ...................................................................................................................20 
II.A.3.2 Logarithms ..................................................................................................................21 
II.A.3.3 The Exponential Function and Natural Logarithms............................................22 
II.A.4 Equations and Inequalities.................................................................................................25 
II.A.4.1 Linear Equations in One Unknown........................................................................25 
II.A.4.2 Inequalities...................................................................................................................26 
II.A.4.3 Systems of Linear Equations in More Than One Unknown..............................26 
II.A.4.4 Quadratic Equations..................................................................................................28 
II.A.5 Functions and Graphs ........................................................................................................28 
II.A.5.1 Functions .....................................................................................................................28 
II.A.5.2 Graphs.........................................................................................................................29 
II.A.5.3 The Graphs of Some Functions ..............................................................................30 
II.A.6 Case Study Continuous Compounding .......................................................................31 
II.A.6.1 Repeated Compounding ...........................................................................................31 
II.A.6.2 Discrete versus Continuous Compounding...........................................................34 
II.A.7 Summary ...............................................................................................................................35 
II.B Descriptive Statistics..........................................................................................................................37 
II.B.1 Introduction........................................................................................................................37 
II.B.2 Data ......................................................................................................................................38 
II.B.2.1 Continuous and Discrete Data.................................................................................38 
II.B.2.2 Grouped Data.............................................................................................................39 
II.B.2.3 Graphical Representation of Data...........................................................................41 
II.B.3 The Moments of a Distribution........................................................................................45 
II.B.4 Measures of Location or Central Tendency  Averages...............................................45 
II.B.4.1 The Arithmetic Mean ................................................................................................45 
 
II.B.4.2 The Geometric Mean ................................................................................................46 
II.B.4.3 The Median and the Mode .......................................................................................48 
II.B.5 Measures of Dispersion......................................................................................................48 
II.B.5.1 Variance .......................................................................................................................49 
II.B.5.2 Standard Deviation ....................................................................................................50 
II.B.5.3 Case Study: Calculating Historical Volatility from Returns Data.......................51 
II.B.5.4 The Negative Semi-variance and Negative Semi-deviation.................................52 
II.B.5.5 Skewness......................................................................................................................53 
II.B.5.6 Kurtosis.......................................................................................................................56 
II.B.6 Bivariate Data.......................................................................................................................57 
II.B.6.1 Covariance...................................................................................................................58 
II.B.6.2 The Covariance Matrix..............................................................................................60 
II.B.6.3 The Correlation Coefficient......................................................................................61 
II.B.6.4 The Correlation Matrix..............................................................................................62 
II.B.6.5 Case Study: Calculating the Volatility of a Portfolio ............................................62 
II.C Calculus................................................................................................................................................67 
II.C.1 Differential Calculus ...........................................................................................................68 
II.C.1.1 Functions .....................................................................................................................68 
II.C.1.2 The First Derivative....................................................................................................69 
II.C.1.3 Notation.......................................................................................................................71 
II.C.1.4 Simple Rules................................................................................................................72 
II.C.2 Case Study: Modified Duration of a Bond......................................................................75 
II.C.3 Higher-Order Derivatives..................................................................................................78 
II.C.3.1 Second Derivatives.....................................................................................................78 
II.C.3.2 Further Derivatives ....................................................................................................79 
II.C.3.3 Taylor Approximations .............................................................................................79 
II.C.4 Financial Applications of Second Derivatives ................................................................81 
II.C.4.1 Convexity.....................................................................................................................81 
II.C.4.2 Convexity in Action...................................................................................................82 
II.C.4.3 The Delta and Gamma of an Option .....................................................................83 
II.C.5 Differentiating a Function of More than One Variable................................................83 
II.C.5.1 Partial Differentiation................................................................................................83 
II.C.5.2 Total Differentiation..................................................................................................85 
II.C.6 Integral Calculus ..................................................................................................................86 
II.C.6.1 Indefinite and Definite Integrals ............................................................................86 
II.C.6.2 Rules for Integration...................................................................................................90 
II.C.6.3 Guessing ......................................................................................................................90 
 
II.C.7 Optimisation.........................................................................................................................90 
II.C.7.1 Finding the Minimum or Maximum of a Function of One Variable ................91 
II.C.7.2 Maxima and Minima of Functions of More than One Variable..........................94 
II.C.7.3 Optimization Subject to Constraints: Lagrange Multipliers...............................95 
II.C.7.4 Applications ................................................................................................................97 
References ...............................................................................................................................................97 
II.D Linear Mathematics and Matrix Algebra.........................................................................................99 
II.D.1 Matrix Algebra ................................................................................................................... 100 
II.D.1.1 Matrices..................................................................................................................... 100 
II.D.1.2 Vectors and Transposes .......................................................................................... 100 
II.D.1.3 Manipulation of Matrices ....................................................................................... 101 
II.D.1.4 Matrix Multiplication.............................................................................................. 103 
II.D.1.5 Inverting a Matrix.................................................................................................... 105 
II.D.2 Application of Matrix Algebra to Portfolio Construction.......................................... 106 
II.D.2.1 Calculating the Risk of an Existing Portfolio ...................................................... 107 
II.D.2.2 Deriving Asset Weights for the Minimum Risk Portfolio................................. 110 
II.D.2.3 Hedging a Vanilla Option Position ....................................................................... 113 
II.D.3 Quadratic Forms............................................................................................................... 117 
II.D.3.1 The Variance of Portfolio Returns as a Quadratic Form................................. 119 
II.D.3.2 Definition of Positive Definiteness....................................................................... 119 
II.D.4 Cholesky Decomposition................................................................................................ 120 
II.D.4.1 The Cholesky Arithmetic ........................................................................................ 121 
II.D.4.2 Simulation in Excel .................................................................................................. 121 
II.D.5 Eigenvalues and Eigenvectors........................................................................................ 125 
II.D.5.1 Matrices as Transformations ................................................................................. 125 
II.D.5.2 Definition of Eigenvector and Eigenvalue........................................................... 126 
II.D.5.3 Determinants............................................................................................................. 128 
II.D.5.4 The Characteristic Equation................................................................................... 129 
II.D.5.5 Principal Components ............................................................................................. 131 
References ............................................................................................................................................ 132 
II.E Probability Theory in Finance........................................................................................................ 135 
II.E.1 Definitions and Rules ...................................................................................................... 136 
II.E.1.1 Definitions................................................................................................................ 136 
II.E.1.2 Rules for Probability............................................................................................... 137 
II.E.2 Probability Distributions................................................................................................. 139 
II.E.2.1 Random Variables ................................................................................................... 139 
II.E.2.2 Probability Density Functions and Histograms ................................................. 141 
 
II.E.2.3 The Cumulative Distribution Function............................................................... 142 
II.E.2.4 The Algebra of Random Variables....................................................................... 143 
II.E.2.5 The Expected Value of a Discrete Random Variable ....................................... 144 
II.E.2.6 The Variance of a Discrete Random Variable.................................................... 144 
II.E.2.7 The Algebra of Continuous Random Variables................................................. 146 
II.E.3 Joint Distributions............................................................................................................ 146 
II.E.3.1 Bivariate Random Variables .................................................................................. 147 
II.E.3.2 Covariance................................................................................................................ 148 
II.E.3.3 Correlation................................................................................................................ 149 
II.E.3.4 The Expected Value and Variance of a Linear Combination of Random 
Variables 151 
II.E.4 Specific Probability Distributions.................................................................................. 151 
II.E.4.1 The Binomial Distribution..................................................................................... 151 
II.E.4.2 The Poisson Distribution....................................................................................... 155 
II.E.4.3 The Uniform Continuous Distribution............................................................... 158 
II.E.4.4 The Normal Distribution....................................................................................... 159 
II.E.4.5 The Lognormal Probability Distribution ............................................................ 163 
II.E.4.7 The Bivariate Normal Distribution...................................................................... 168 
II.F Regression Analysis in Finance ...................................................................................................... 171 
II.F.1 Simple Linear Regression................................................................................................ 172 
II.F.1.1 The Model..................................................................................................................... 172 
II.F.1.2 The Scatter Plot............................................................................................................ 174 
II.F.1.3 Estimating the Parameters.......................................................................................... 175 
II.F.2 Multiple Linear Regression............................................................................................. 180 
II.F.2.1 The Model..................................................................................................................... 180 
II.F.2.2 Estimating the Parameters.......................................................................................... 181 
II.F.3 Evaluating the Regression Model .................................................................................. 182 
II.F.3.1 Intuitive Interpretation ............................................................................................... 183 
II.F.3.2 Adjusted R2 ................................................................................................................... 183 
II.F.3.3 Testing for Statistical Significance............................................................................. 184 
II.F.4 Confidence Intervals........................................................................................................ 184 
II.F.4.1 Confidence Intervals for the Regression Parameters............................................. 184 
II.F.5 Hypothesis Testing........................................................................................................... 186 
II.F.5.1 Significance Tests for the Regression Parameters .................................................. 187 
II.F.5.2 Significance Test for R2 .............................................................................................. 188 
II.F.5.3 Type I and Type II Errors.......................................................................................... 188 
II.F.6 Prediction.......................................................................................................................... 189 
 
II.F.7 Breakdown of the OLS Assumptions........................................................................... 191 
II.F.7.1 Heteroscedasticity........................................................................................................ 191 
II.F.7.2 Autocorrelation............................................................................................................ 192 
II.F.7.3 Multicollinearity............................................................................................................ 192 
II.F.8 Random Walks and Mean Reversion............................................................................ 193 
II.F.9 Maximum Likelihood Estimation.................................................................................. 196 
II.F.10 Summary ............................................................................................................................. 197 
References ............................................................................................................................................ 197 
II.G Numerical Methods........................................................................................................................ 199 
II.G.1 Solving (Non-differential) Equations............................................................................ 199 
II.G.1.1 Three Problems ....................................................................................................... 199 
II.G.1.2 Bisection ................................................................................................................... 201 
II.G.1.3 NewtonRaphson................................................................................................... 205 
II.G.1.4 Goal Seek.................................................................................................................. 207 
II.G.2 Numerical Optimisation.................................................................................................. 207 
II.G.2.1 The Problem............................................................................................................ 208 
II.G.2.2 Unconstrained Numerical Optimisation............................................................. 209 
II.G.2.3 Constrained Numerical Optimisation.................................................................. 211 
II.G.2.4 Portfolio Optimisation Revisited.......................................................................... 212 
II.G.3 Numerical Methods for Valuing Options .................................................................... 213 
II.G.3.1 Binomial Lattices..................................................................................................... 214 
II.G.3.2 Finite Difference Methods .................................................................................... 220 
II.G.3.3 Simulation................................................................................................................. 223 
II.G.4 Summary ............................................................................................................................ 226 
References ............................................................................................................................................ 226 
 
  |