人大经济论坛下载系统

经济学 计量与统计 工商管理与财会 金融投资学其他
返回首页
当前位置: 主页 > 图书 > 其他 >

Intro to Data Mining 3rd ed

文件格式:Pdf 可复制性:可复制 TAG标签: data Mining Intro 点击次数: 更新时间:2009-09-30 16:57
介绍

TABLE OF CONTENTS
Introduction
Data mining: In brief ................................................................... 1
Data mining: What it can’t do ..................................................... 1
Data mining and data warehousing ............................................. 2
Data mining and OLAP ............................................................... 3
Data mining, machine learning and statistics .............................. 4
Data mining and hardware/software trends................................. 4
Data mining applications ............................................................. 5
Successful data mining ................................................................ 5
Data Description for Data Mining
Summaries and visualization ....................................................... 6
Clustering .................................................................................... 6
Link analysis ............................................................................... 7
Predictive Data Mining
A hierarchy of choices................................................................. 9
Some terminology ..................................................................... 10
Classification ............................................................................. 10
Regression ................................................................................. 10
Time series ................................................................................ 10
Data Mining Models and Algorithms
Neural networks ........................................................................ 11
Decision trees ............................................................................ 14
Multivariate Adaptive Regression Splines (MARS) ................. 17
Rule induction ........................................................................... 17
K-nearest neighbor and memory-based reasoning (MBR) ....... 18
Logistic regression .................................................................... 19
Discriminant analysis ................................................................ 19
Generalized Additive Models (GAM) ....................................... 20
Boosting .................................................................................... 20
Genetic algorithms .................................................................... 21
The Data Mining Process
Process Models ......................................................................... 22
The Two Crows Process Model ................................................ 22
Selecting Data Mining Products
Categories .................................................................................. 34
Basic capabilities ....................................................................... 34
Summary............................................................................................ 36

下载地址
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------