Intro to Data Mining 3rd ed
			
			
			
			
				介绍
			
			
				TABLE OF CONTENTS 
Introduction 
Data mining: In brief ................................................................... 1 
Data mining: What it can’t do ..................................................... 1 
Data mining and data warehousing ............................................. 2 
Data mining and OLAP ............................................................... 3 
Data mining, machine learning and statistics .............................. 4 
Data mining and hardware/software trends................................. 4 
Data mining applications ............................................................. 5 
Successful data mining ................................................................ 5 
Data Description for Data Mining 
Summaries and visualization ....................................................... 6 
Clustering .................................................................................... 6 
Link analysis ............................................................................... 7 
Predictive Data Mining 
A hierarchy of choices................................................................. 9 
Some terminology ..................................................................... 10 
Classification ............................................................................. 10 
Regression ................................................................................. 10 
Time series ................................................................................ 10 
Data Mining Models and Algorithms 
Neural networks ........................................................................ 11 
Decision trees ............................................................................ 14 
Multivariate Adaptive Regression Splines (MARS) ................. 17 
Rule induction ........................................................................... 17 
K-nearest neighbor and memory-based reasoning (MBR) ....... 18 
Logistic regression .................................................................... 19 
Discriminant analysis ................................................................ 19 
Generalized Additive Models (GAM) ....................................... 20 
Boosting .................................................................................... 20 
Genetic algorithms .................................................................... 21 
The Data Mining Process 
Process Models ......................................................................... 22 
The Two Crows Process Model ................................................ 22 
Selecting Data Mining Products 
Categories .................................................................................. 34 
Basic capabilities ....................................................................... 34 
Summary............................................................................................ 36  | 
			
 
			
				下载地址
			
			
			
			
			
			
			
			
			
			
				------分隔线----------------------------