Portfolio Optimization and Performance Analysis
			
			
			
			
				介绍
			
			
				Contents 
List of Tables XIII 
List of Figures XV 
I Utility and risk analysis 1 
1 Utility theory 5 
1.1 Preferences under uncertainty . . . . . . . . . . . . . . . . . 7 
1.1.1 Lotteries . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
1.1.2 Axioms on pref erences . . . . . . . . . . . . . . . . . . 8 
1.2 Expected utility . . . . . . . . . . . . . . . . . . . . . . . . . 9 
1.3 Risk aversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
1.3.1 Arrow-Pratt measures ofri sk aversion . . . . . . . . . 13 
1.3.2 Standard utility functions . . . . . . . . . . . . . . . . 15 
1.3.3 Applications to portfolio allocation . . . . . . . . . . . 17 
1.4 Stochastic dominance . . . . . . . . . . . . . . . . . . . . . . 19 
1.5 Alternative expected utility theory . . . . . . . . . . . . . . . 24 
1.5.1 Weighted utility theory . . . . . . . . . . . . . . . . . 25 
1.5.2 Rank dependent expected utility theory . . . . . . . . 27 
1.5.3 Non-additive expected utility . . . . . . . . . . . . . . 32 
1.5.4 Regret theory . . . . . . . . . . . . . . . . . . . . . . . 33 
1.6 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . 35 
2 Riskmeasures 37 
2.1 Coherent and convex risk measures . . . . . . . . . . . . . . 37 
2.1.1 Coherent riskmeasures . . . . . . . . . . . . . . . . . 38 
2.1.2 Convex riskmeasures . . . . . . . . . . . . . . . . . . 39 
2.1.3 Representation ofri sk measures . . . . . . . . . . . . . 40 
2.1.4 Risk measures and utility . . . . . . . . . . . . . . . . 41 
2.1.5 Dynamic riskmeasures . . . . . . . . . . . . . . . . . 43 
2.2 Standard riskmeasures . . . . . . . . . . . . . . . . . . . . . 48 
2.2.1 Value-at-Risk . . . . . . . . . . . . . . . . . . . . . . . 48 
2.2.2 CVaR . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 
2.2.3 Spectral measures of risk . . . . . . . . . . . . . . . . 59 
2.3 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . 62 
X Portfolio Optimization and Performance Analysis 
II Standard portfolio optimization 65 
3 Static optimization 67 
3.1 Mean-variance analysis . . . . . . . . . . . . . . . . . . . . . 68 
3.1.1 Diversification effect . . . . . . . . . . . . . . . . . . . 68 
3.1.2 Optimal weights . . . . . . . . . . . . . . . . . . . . . 71 
3.1.3 Additional constraints . . . . . . . . . . . . . . . . . . 78 
3.1.4 Estimation problems . . . . . . . . . . . . . . . . . . . 82 
3.2 Alternative criteria . . . . . . . . . . . . . . . . . . . . . . . 85 
3.2.1 Expected utility maximization . . . . . . . . . . . . . 85 
3.2.2 Risk measure minimization . . . . . . . . . . . . . . . 93 
3.3 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . 100 
4 Indexed funds and benchmarking 103 
4.1 Indexed funds . . . . . . . . . . . . . . . . . . . . . . . . . . 103 
4.1.1 Tracking error . . . . . . . . . . . . . . . . . . . . . . 104 
4.1.2 Simple index tracking methods . . . . . . . . . . . . . 105 
4.1.3 The threshold accepting algorithm . . . . . . . . . . . 106 
4.1.4 Cointegration tracking method . . . . . . . . . . . . . 112 
4.2 Benchmark portf olio optimization . . . . . . . . . . . . . . . 117 
4.2.1 Tracking-error definition . . . . . . . . . . . . . . . . . 118 
4.2.2 Tracking-errorminimization . . . . . . . . . . . . . . . 119 
4.3 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . 127 
5 Portfolio performance 129 
5.1 Standard performance measures . . . . . . . . . . . . . . . . 130 
5.1.1 The Capital Asset Pricing Model . . . . . . . . . . . . 130 
5.1.2 The three standard performance measures . . . . . . . 132 
5.1.3 Other performance measures . . . . . . . . . . . . . . 140 
5.1.4 Beyond the CAPM . . . . . . . . . . . . . . . . . . . . 145 
5.2 Perf ormance decomposition . . . . . . . . . . . . . . . . . . . 151 
5.2.1 The Fama decomposition . . . . . . . . . . . . . . . . 151 
5.2.2 Other performance attributions . . . . . . . . . . . . . 153 
5.2.3 The external attribution . . . . . . . . . . . . . . . . . 153 
5.2.4 The internal attribution . . . . . . . . . . . . . . . . . 155 
5.3 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . 163 
III Dynamic portfolio optimization 165 
6 Dynamic programming optimization 169 
6.1 Control theory . . . . . . . . . . . . . . . . . . . . . . . . . . 169 
6.1.1 Calculus ofv ariations . . . . . . . . . . . . . . . . . . 169 
6.1.2 Pontryagin and Bellman principles . . . . . . . . . . . 175 
6.1.3 Stochastic optimal control . . . . . . . . . . . . . . . . 182 
6.2 Lifetime portfolio selection . . . . . . . . . . . . . . . . . . . 187 
Contents XI 
6.2.1 The optimization problem . . . . . . . . . . . . . . . . 187 
6.2.2 The deterministic coefficients case . . . . . . . . . . . 188 
6.2.3 The general case . . . . . . . . . . . . . . . . . . . . . 195 
6.2.4 Recursive utility in continuous-time . . . . . . . . . . 203 
6.3 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . 205 
7 Optimal payoff profiles and long-term management 207 
7.1 Optimal payoffs as functions of a benchmark . . . . . . . . . 207 
7.1.1 Linear versus option-based strategy . . . . . . . . . . 207 
7.2 Application to long-term management . . . . . . . . . . . . . 214 
7.2.1 Assets dynamics and optimal portfolios . . . . . . . . 214 
7.2.2 Exponential utility . . . . . . . . . . . . . . . . . . . . 220 
7.2.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . 223 
7.2.4 Distribution ofthe optimal portfolio return . . . . . . 225 
7.3 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . 226 
8 Optimization within specific markets 229 
8.1 Optimization in incomplete markets . . . . . . . . . . . . . . 230 
8.1.1 General result based on martingale method . . . . . . 230 
8.1.2 Dynamic programming and viscosity solutions . . . . 238 
8.2 Optimization with constraints . . . . . . . . . . . . . . . . . 242 
8.2.1 General result . . . . . . . . . . . . . . . . . . . . . . . 242 
8.2.2 Basic examples . . . . . . . . . . . . . . . . . . . . . . 249 
8.3 Optimization with transaction costs . . . . . . . . . . . . . . 256 
8.3.1 The infinite-horizon case . . . . . . . . . . . . . . . . . 256 
8.3.2 The finite-horizon case . . . . . . . . . . . . . . . . . . 260 
8.4 Other f rameworks . . . . . . . . . . . . . . . . . . . . . . . . 263 
8.4.1 Labor income . . . . . . . . . . . . . . . . . . . . . . . 263 
8.4.2 Stochastic horizon . . . . . . . . . . . . . . . . . . . . 272 
8.5 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . 276 
IV Structured portfolio management 279 
9 Portfolio insurance 281 
9.1 The Option Based Portfolio Insurance . . . . . . . . . . . . . 282 
9.1.1 The standard OBPI method . . . . . . . . . . . . . . . 284 
9.1.2 Extensions oft he OBPI method . . . . . . . . . . . . 286 
9.2 The Constant Proportion Portfolio Insurance . . . . . . . . . 294 
9.2.1 The standard CPPI method . . . . . . . . . . . . . . . 295 
9.2.2 CPPI extensions . . . . . . . . . . . . . . . . . . . . . 303 
9.3 Comparison between OBPI and CPPI . . . . . . . . . . . . . 305 
9.3.1 Comparison at maturity . . . . . . . . . . . . . . . . . 305 
9.3.2 The dynamic behavior ofOBPI and CPPI . . . . . . . 310 
9.4 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . 318 
XII Portfolio Optimization and Performance Analysis 
10 Optimal dynamic portfolio with risk limits 319 
10.1 Optimal insured portfolio: discrete-time case . . . . . . . . . 321 
10.1.1 Optimal insured portfolio with a fixed number of assets 321 
10.1.2 Optimal insured payoffs as functions of a benchmark . 326 
10.2 Optimal Insured Portfolio: the dynamically complete case . . 333 
10.2.1 Guarantee atmaturity . . . . . . . . . . . . . . . . . . 333 
10.2.2 Risk exposure and utility function . . . . . . . . . . . 335 
10.2.3 Optimal portfolio with controlled drawdowns . . . . . 337 
10.3 Value-at-Risk and expected shortfall based management . . . 340 
10.3.1 Dynamic saf ety criteria . . . . . . . . . . . . . . . . . 340 
10.3.2 Expected utility under VaR/CVaR constraints . . . . 347 
10.4 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . 350 
11 Hedge funds 351 
11.1 The hedge funds industry . . . . . . . . . . . . . . . . . . . . 351 
11.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 351 
11.1.2 Main strategies . . . . . . . . . . . . . . . . . . . . . . 352 
11.2 Hedge f und perf ormance . . . . . . . . . . . . . . . . . . . . 354 
11.2.1 Return distributions . . . . . . . . . . . . . . . . . . . 354 
11.2.2 Sharpe ratio limits . . . . . . . . . . . . . . . . . . . . 355 
11.2.3 Alternative performance measures . . . . . . . . . . . 362 
11.2.4 Benchmarks for alternative investment . . . . . . . . . 368 
11.2.5 Measure oft he performance persistence . . . . . . . . 369 
11.3 Optimal allocation in hedge funds . . . . . . . . . . . . . . . 370 
11.4 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . 371 
A Appendix A: Arch Models 373 
B Appendix B: Stochastic Processes 381 
References 397 
Symbol Description 431 
Index 433  | 
			
 
			
				下载地址
			
			
			
			
			
			
			
			
			
			
				------分隔线----------------------------